Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Wednesday 20 September 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 383, 423 - 425 (03 October 1996); doi:10.1038/383423a0

An abiotic model for stromatolite morphogenesis

John P. Grotzinger & Daniel H. Rothman

Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

STROMATOLITES are laminated, accretionary structures, which are commonly regarded to have formed by the sediment-binding or precipitating activities of ancient microbial mats or biofilms (composed mainly of cyanobacteria), possibly supplemented by abiotic surface precipitation1–4. Stromatolites are thus considered to be a proxy for early life on Earth, as the record of these structures extends back to 3.5 Gyr ago5. But as stromatolites only rarely contain fossil microbes, their biogenicity is tacitly assumed on the basis of morphological comparisons with modern, demonstrably biological, structures6. Little is known about the physical, chemical and biological processes that controlled the growth of ancient stromatolites4 and, with pioneering exceptions7–9, the analysis of the inherent geometric characteristics of the structures has not been pursued. Here we present a morphological characterization of ancient stromatolites that have growth surfaces with self-afime fractal geometry. We deduce, from both the microscopic textures and the fractal dimension, a purely abiotic dynamical model of stromatolite surface growth that combines chemical precipitation on the growing interface, fallout and diffusive rearrangement of suspended sediment, and uncorrelated random noise. This result calls into question the assumption that organisms—even if present—necessarily played an essential role in determining stromatolite morphology during times when precipitation at the sea floor was common, such as the earlier Precambrian.

------------------

References

1. Kalkowsky, V. H. E. Z. Deutsch. Geolosischen Gesellschaft 60, 68−125 (1908).
2. Young, R. B. Trans. Proc. Geol. Soc. S. Africa 35, 29−36 (1932).
3. Walter, M. R. (ed.) Stromatolites (Elsevier, Amsterdam, 1976).
4. Ginsburg, R. N. in Controversies in Modem Geology 25−36 (Academic, London, 1991).
5. Schopf, J. W. Earth's Earliest Biosphere (Princeton Univ. Press, 1983).
6. Buick, R., Dunlop, J. S. R. & Groves, D. I. Alcheringa 21, 161−181 (1981).
7. Hofmann, H. J. in Stromatolites (ed. Walter, M. R.) 45−54 (Elsevier, Amsterdam, 1976).
8. Zhang, Y. & Hofmann, H. J. J. Geol. 90, 253−268 (1982).
9. Hofmann, H. J. J. Paleontol. 68, 704−709 (1994).
10. Hoffman, P. F. Phil. Trans. R. Soc. Lond. A 273, 547−581 (1973).
11. Jackson, M. J. in Reefe, Canada and Adjacent Areas (eds Geldsetzer, H. H. J., James, N. P. & Tebbutt, G. E.) 64−71 (Can. Soc. Petroleum Geologists, Calgary, 1989).
12. Press, W. H., Flannery, B. P., Vetterling, W. T. & Teukolsky, S. A. Numerical Recipes in C: The Art of Scientific Computing (Cambridge Univ. Press, New York, 1994).
13. Turcotte, D. L. Fractals and Chaos in Geology and Geophysics (Cambridge Univ. Press, 1992).
14. Kardar, M., Parisi, G. & Zhang, Y. Phys. Rev. Lett. 56, 456−472 (1986). | PubMed |
15. Kim, J. M. & Kosterlitz, J. M. Phys. Rev. Lett. 62, 2289−2292 (1989). | Article | PubMed |
16. Amar, J. G. & Family, F. Phys. Rev. A 41, 3399−3402 (1990). | Article | PubMed |
17. Barabasi, A. L. & Stanley, H. E. Fractal Concepts in Surface Growth (Cambridge Univ. Press, 1995).
18. Edwards, S. & Wilkinson, D. Proc. R. Soc. Lond. A 381, 17−31 (1982).
19. Grotzinger, J. P. & Read, J. F. Geology 11, 710−713 (1983). | Article | ChemPort |
20. Hofmann, H. J. & Jackson, G. D. Sedimentology 34, 963−971 (1988).
21. Sami, T. T. & James, N. P. J. Sed. Res. (in the press).
22. Sumner, D. Y. Palaois (submitted).
23. Knoll, A. H., Grotzinger, J. P. & Sergeev, V. Geol. Soc. Am. Abstr. Progm. A357 (1993).



© 1996 Nature Publishing Group
Privacy Policy