Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system

Abstract

THE source of the hydrothermal fluids vented in active volcanic areas on the sea floor1–3 has been a matter of some debate4–7; they may arise purely from the interaction of circulating sea water with the hot rocks through which it passes1,3,8, or there may be an admixture of a fluid escaping from magma at depth, as is seen in subaerial geothermal systems9. The answer to this question also bears on the origin of the sulphide ores deposited by sea-floor hydrothermal systems, and their ancient analogues8,10,11 preserved on land. Here we present direct evidence for the presence of magmatic fluid in the lavas that host an actively forming massive sulphide deposit in the eastern Manus back-arc basin. We find high concentrations of chlorides and sulphides of ore-forming metals such as copper, zinc and iron in CO2-rich gaseous bubbles found both in melt inclusions trapped in the phenocrysts of the volcanic rocks, and in the matrix glass. We conclude that a metal-rich fluid was present in the magma before eruption, and probably exsolved as the pressure decreased. This finding suggests the possibility for the contribution of large quantities of ore-forming metals to a sea-floor hydrothermal system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lydon, J. L. Geosci. Can. 15, 43–65 (1988).

    Google Scholar 

  2. von Damm, K. L. Annu. Rev. Earth Planet Sci. 18, 173–204 (1990).

    Article  ADS  Google Scholar 

  3. Cathles, L. M. Econ. Geol. 88, 1977–1988 (1993).

    Article  Google Scholar 

  4. Stanton, R. L. Ore Elements in Arc Lavas (Clarendon, Oxford, 1994).

    Google Scholar 

  5. Fenner, C. N. Ore Deposits of the Western States (Lindren Vol.) Ch. III, Pt 1, 58–106 (Am. Inst. Mining & Metallurgical Engrs, New York, 1933).

    Google Scholar 

  6. Urabe, T. & Marumo, K. Episodes 14, 246–251 (1991).

    Google Scholar 

  7. De Ronde, C. E. J. in Magmas, Fluids, and Ore Deposits (ed. Thompson, J. F. H.) 479–510 (Mineralogical Assoc. of Canada, Ottawa, 1995).

    Google Scholar 

  8. Franklin, J. M., Lydon, J. W. & Sangster, D. F. Econ. Geol. (75th Anniv. Vol.) 485–627 (1981).

  9. Hedenquist, J. W. & Lowenstern, J. B. Nature 370, 519–527 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Scott, S. D. Mar. Min. 5, 191–212 (1985).

    CAS  Google Scholar 

  11. Rona, P. A. & Scott, S. D. Econ. Geol. 88, 1933–1976 (1993).

    Google Scholar 

  12. Roedder, E. Fluid Inclusions (Mineralogical Soc. Am., Washington DC, 1984).

    Book  Google Scholar 

  13. Cashman, K. V. & Mangan, M. T. in Volatiles in Magmas (eds Carroll, M. R. & Holloway, J. R.) 447–478 (Mineralogical Soc. Am., Washington DC, 1994).

    Book  Google Scholar 

  14. Taylor, B., Crook, K. A. W., Sinton, J. M. & Petersen, L. in Pacific Sea Floor Atlas Sheets 1–7 (Hawaii Inst. of Geophys, Honolulu, 1991).

  15. Binns, R. A. & Scott, S. D. Econ. Geol. 88, 2226–2237 (1993).

    Article  Google Scholar 

  16. Scott, S. D. & Binns, R. A. in Hydrothermal Vents and Processes (eds Walker, L. M. & Dixon, D. R.) 191–205 (Spec. Publ. No. 87, Geol. Soc., London, 1995).

    Google Scholar 

  17. Javoy, M. & Pineau, F. Earth Planet. Sci. Lett. 107, 598–611 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Kelley, D. S. J. Geophys. Res. 101, 2943–2962 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Gerlach, T. M. & Graeber, E. J. Nature 313, 273–277 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Mathez, E. A. in Ore Deposition Associated with Magmas (eds Whitney, J. A. & Naldrett, A. J.) 21–32 (Rev. Econ. Geol. 4, Soc. of Economic Geologists, Littleton, Colorado, 1989).

    Google Scholar 

  21. Dixon, J. E. & Stolper, E. M. J. Petrol. 36, 1633–1646 (1995).

    CAS  Google Scholar 

  22. Lowenstern, J. B., Mahood, G. A., Rivers, M. L. & Sutton, S. R. Science 252, 1405–1409 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Lowenstern, J. B. Contr. Mineral. Petrol. 114, 409–421 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Heinrich, C. A., Ryan, C. G., Mernagh, T. P. & Eadington, P. J. Econ. Geol. 87, 1566–1583 (1992).

    Article  CAS  Google Scholar 

  25. Ballhaus, C., Ryan, C. G., Mernagh, T. P. & Green, D. H. Geochim. Cosmochim. Acta 58, 811–826 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Fleet, M. E. & Wu, T. Geochim. Cosmochim. Acta 59, 487–495 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Stoiber, R. E. & Rose, W. I. Jr Geochim. Cosmochim. Acta 38, 495–516 (1974).

    Article  ADS  CAS  Google Scholar 

  28. Joran, Y. A., Hedenquist, J. W., Korzhinsky, M. A., Tkachenko, S. I. & Shmulovich, K. Geochim. Cosmochim. Acta 59, 1749–1761 (1995).

    Article  ADS  Google Scholar 

  29. Sakai, H. et al. Science 248, 1093–1096 (1990).

    Article  ADS  CAS  Google Scholar 

  30. Urabe, T. et al. Science 269, 1092–1095 (1995).

    Article  ADS  CAS  Google Scholar 

  31. Jaupart, C. & Tait, S. in Modern Methods of Igneous Petrology: Understanding Magmatic Processes (eds Nicholls, J. & Russell, J. K.) 213–238 (Mineralogical Soc. Am., Washington DC, 1990).

    Book  Google Scholar 

  32. Ernst, W. G. Petrologic Phase Equilibrium 333 (Freeman, San Francisco, 1976).

    Google Scholar 

  33. Peacock, S. M. Science 248, 329–337 (1990).

    Article  ADS  CAS  Google Scholar 

  34. Urabe, T. Econ. Geol. 82, 1049–1052 (1987).

    Article  CAS  Google Scholar 

  35. von Damm, K. L. et al. Geochim. Cosmochim. Acta 49, 2197–2220 (1985).

    Article  ADS  CAS  Google Scholar 

  36. Weast, R. C. & Astle, M. J. CRC Handbook of Chemistry and Physics B-98 (CRC, Boca Raton, 1982).

    Google Scholar 

  37. Moore, J. M. & Calk, L. Am. Mineral. 56, 476–488 (1971).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, K., Scott, S. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature 383, 420–423 (1996). https://doi.org/10.1038/383420a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383420a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing