Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The role of heterotrophic bacteria in iron-limited ocean ecosystems

Abstract

IRON availability limits phytoplankton growth in large areas of the world's oceans1–3 and may influence the strength of the biological carbon pump4,5. Very little is known of the iron requirements of oceanic heterotrophic bacteria, which constitute up to 50% of the total particulate organic carbon in open ocean waters6,7 and are important in carbon cycling as remineralizers of dissolved organic matter and hence producers of CO2 (ref. 8). Here we report that oceanic bacteria contain more iron per biomass than phytoplankton. In the subarctic Pacific, they constitute a large fraction of biogenic iron and account for 20–45% of biological iron uptake. Bacterial iron quotas in the field are similar to those of iron-deficient laboratory cultures, which exhibit reduced elec-tron transport, slow growth, and low carbon growth efficiency. Heterotrophic bacteria therefore play a major role in the biogeo-chemical cycling of iron. In situ iron limitation of heterotrophic metabolism may have profound effects on carbon flux in the ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Martin, J. H. et al. Nature 371, 123–129 (1994).

    Article  ADS  CAS  Google Scholar 

  2. de Baar, H. J. W. et al. Nature 373, 412–415 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Martin, J. H. & Fitzwater, S. E. Nature 331, 341–343 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Price, N. M., Ahner, B. A. & Morel, F. M. M. Limnol. Oceanogr. 39, 520–539 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Coale, K. H., Fitzwater, S. E., Gordon, R. M., Johnson, K. S. & Barber, R. T. Nature 379, 621–624 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Fuhrman, J. A., Sleeter, T. D., Carlson, C. A. & Proctor, L. M. Mar. Ecol. Progr. Ser. 57, 207–217 (1989).

    Article  ADS  Google Scholar 

  7. Kirchman, D. L., Keil, R. G., Simon, M. & Welschmeyer, N. A. Deep-Sea Res. 40, 967–988 (1993).

    Article  Google Scholar 

  8. Williams, P. J. le B. Kiel. Meeresforsch. 5, 1–28 (1981).

    Google Scholar 

  9. Price, N. M. et al. Biol. Oceanogr. 6, 443–461 (1988).

    Google Scholar 

  10. Maldonado, M. T. & Price N. M. Mar. Ecol. Prog. Ser. (in the press).

  11. Brand, L. E. Limnol. Oceanogr. 36, 1755–1771 (1991).

    Article  ADS  Google Scholar 

  12. Martin, J. H., Fitzwater, S. E. & Broenkow, W. W. Deep-Sea Res. 36, 649–680 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Martin, J. H. & Knauer, G. A. Geochim. Cosmochim. Acta 37, 1639–1653 (1973).

    Article  ADS  CAS  Google Scholar 

  14. Booth, B. C., Lewin, J. & Lorenzen, C. J. Mar. Biol. 98, 287–298 (1988).

    Article  Google Scholar 

  15. Miller, C. B. et al. Limnol. Oceanogr. 36, 1600–1615 (1991).

    Article  ADS  CAS  Google Scholar 

  16. LaRoche, J., Boyd, P. W., McKay, R. M. L. & Geider, R. J. Nature 382, 802–805 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Reid, R. T., Live, D. H., Faulkner, D. J. & Butler, A. Nature 366, 455–548 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Rue, E. L. & Bruland, K. W. Mar. Chem. 50, 117–138 (1995).

    Article  CAS  Google Scholar 

  19. Brand, L. E., Sunda, W. G. & Guillard, R. R. L. Limnol. Oceanogr. 28, 1182–1198 (1983).

  20. Sunda, W. G., Swift, D. G. & Huntsman, S. A. Nature 351, 55–57 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Ingram, J. L., Maaløe, O. & Neidhardt, F. C., Growth of the Bacterial Cell (Sinauer, Sunderland, MA, 1983).

    Google Scholar 

  22. Rainnie, D. J. & Bragg, P. D. J. Gen. Microbiol. 77, 339–349 (1973).

    Article  CAS  Google Scholar 

  23. Kirchman, D. L. Mar. Ecol. Prog. Ser. 62, 47–54 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Hudson, R. J. & Morel, F. M. M. Limnol. Oceanogr. 34, 1113–1120 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Lee, S. & Fuhrman, J. A. Appl. Envir. Microbiol. 53, 1298–1303 (1987).

    CAS  Google Scholar 

  26. Booth, B. C., Lewin, J. & Postel, J. R. Prog. Oceanogr. 32, 57–99 (1993).

    Article  ADS  Google Scholar 

  27. Neuer, S. Mar. Ecol. Prog. Ser. 83, 251–262 (1992).

    Article  ADS  Google Scholar 

  28. Welschmeyer, N., Goericke, R., Strom, S. & Peterson, W. Limnol. Oceanogr. 36, 1631–1649 (1991).

    Article  ADS  Google Scholar 

  29. Packard, T. T. & Williams, P. J. le B. Oceanol. Acta 4, 351–358 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tortell, P., Maldonado, M. & Price, N. The role of heterotrophic bacteria in iron-limited ocean ecosystems. Nature 383, 330–332 (1996). https://doi.org/10.1038/383330a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383330a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing