Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Symmetry perception in an insect

Abstract

SYMMETRICAL visual patterns have a salient status in human perception, as evinced by their prevalent occurrence in art1, and also in animal perception, where they may be an indicator of phenotypic and genotypic quality2–4. Symmetry perception has been demonstrated in humans5–8, birds9–11, dolphins12 and apes13. Here we show that bees trained to discriminate bilaterally symmetrical from non-symmetrical patterns learn the task and transfer it appropriately to novel stimuli, thus demonstrating a capacity to detect and generalize symmetry or asymmetry. We conclude that bees, and possibly flower-visiting insects in general, can acquire a generalized preference towards symmetrical or, alternatively, asymmetrical patterns depending on experience, and that symmetry detection is preformed or can be learned as a perceptual category by insects, because it can be extracted as an independent visual pattern feature. Bees show a predisposition for learning and generalizing symmetry because, if trained to it, they choose it more frequently, come closer to and hover longer in front of the novel symmetrical stimuli than the bees trained for asymmetry do for the novel asymmetrical stimuli. Thus, even organisms with comparatively small nervous systems can generalize about symmetry, and favour symmetrical over asymmetrical patterns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Caglioti, G. Symmetriebrechung und Wahrnehmung (Vieweg, Braunschweig, 1990).

    Book  Google Scholar 

  2. Møller, A. P. Nature 357, 238–240 (1992).

    Article  ADS  Google Scholar 

  3. Møller, A. P. Behavl Ecol. Sociobiol. 32, 371–376 (1993).

    Article  Google Scholar 

  4. Swaddle, J. P. & Cuthill, I. Nature 367, 165–166 (1994).

    Article  ADS  Google Scholar 

  5. Corballis, M. C. & Roldán, C. E. J. exp. Psychol. 1, 221–230 (1975).

    CAS  Google Scholar 

  6. Pashler, H. J. exp. Psychol. 16, 150–163 (1990).

    CAS  Google Scholar 

  7. Barlow, H. B. & Reeves, B. C. Vision Res. 19, 783–793 (1979).

    Article  CAS  Google Scholar 

  8. Bornstein, M. H., Ferdinandsen, K. & Gross, C. G. Devl Psychol. 17, 82–86 (1981).

    Article  Google Scholar 

  9. Delius, J. D. & Habers, G. Behavl Biol. 22, 336–342 (1978).

    Article  CAS  Google Scholar 

  10. Delius, J. D. & Nowak, B. Psychol. Res. 44, 199–212 (1982).

    Article  CAS  Google Scholar 

  11. Menne, M. & Curio, E. Z. Tierpsychol. 47, 299–322 (1978).

    Article  Google Scholar 

  12. von Fersen, L., Manos, C., Goldowsky, B. & Roitblat, H. in Marine Mammal Sensory Systems (ed. Thomas, J. et al.), 753–762 (Plenum, New York, 1992).

    Book  Google Scholar 

  13. Rensch, B. Z. Tierpsychol. 14, 71–99 (1957).

    Article  Google Scholar 

  14. Menzel, R. & Shmida, A. Biol. Rev. 68, 81–120 (1993).

    Article  Google Scholar 

  15. Møller, A. P. & Eriksson, M. J. evol. Biol. 7, 97–113 (1994).

    Article  Google Scholar 

  16. Wehner, R. in Handbook of Sensory Physiology (ed. Autrum, H. J.), Vol. VII/6C, 287–616 (Springer, Berlin, 1981).

    Google Scholar 

  17. van Hateren, J. H., Srinivasan, M. & Wait, P. B. J. comp. Physiol. A167, 649–654 (1990).

    Article  Google Scholar 

  18. Giurfa, M., Backhaus, W. & Menzel, R. Naturwissenschaften 82, 198–201 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Hertz, M. Z. vergl. Physiol. 8, 693–748 (1929).

    Article  Google Scholar 

  20. Horridge, G. A., Zhang, S. W. & Lehrer, M. Phil. Trans. R. Soc. Lond. B337, 49–57 (1992).

    Article  Google Scholar 

  21. Srinivasan, M. J. Insect Physiol. 40, 183–194 (1994).

    Article  Google Scholar 

  22. Srinivasan, M., Zhang, S. & Witney, K. Phil. Trans. R. Soc. Lond. B343, 199–210 (1994).

    Article  Google Scholar 

  23. Marc̆elja, S. J. opt Soc. Am. 70, 1297–1300 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  24. Osorio, D. Proc. R. Soc. B263, 105–110 (1996).

    Article  ADS  Google Scholar 

  25. Menzel, R. Z. vergl. Physiol. 56, 22–62 (1967).

    Article  Google Scholar 

  26. Giurfa, M., Núñez, J. A., Chittka, L. & Menzel, R. J. comp. Physiol. A177, 247–259 (1995).

    Article  Google Scholar 

  27. Lehrer, M., Horridge, G. A., Zhang, S. W. & Gadagkar, R. Phil. Trans. R. Soc. Lond. B347, 123–137 (1995).

    Article  Google Scholar 

  28. Møller, A. P. Proc. natn. Acad. Sci. U.S.A. 92, 2288–2292 (1995).

    Article  ADS  Google Scholar 

  29. Enquist, M. & Arak, A. Nature 372, 169–172 (1994).

    Article  ADS  CAS  Google Scholar 

  30. O'Carrol, D. Nature 362, 541–543 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giurfa, M., Eichmann, B. & Menzel, R. Symmetry perception in an insect. Nature 382, 458–461 (1996). https://doi.org/10.1038/382458a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382458a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing