Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Constraints from seismic anisotropy on the nature of the lowermost mantle

Abstract

THE D″ layer lies at the bottom of the Earth's rocky mantle, and separates it from the liquid metal-alloy core. This region, extending from the core–mantle boundary to a few hundred kilometres above (Fig. 1), is geodynamically analogous to the more easily studied lithosphere, at the top of the mantle. The structure of D″ may reflect the style of lower-mantle convection, the nature of core–mantle interaction and perhaps even the fate of subducting lithosphere1. Observations of lithospheric seismic anisotropy have provided valuable insight into the nature of the upper-mantle boundary layer, but discussion of lower-mantle seismic anisotropy has been somewhat contentious2–5. Here we present evidence, from seismic waves that have traversed the lowermost mantle beneath the Caribbean region, for a zone of seismic anisotropy below the D″ discontinuity, which in this region lies 250 km above the core–mantle boundary. The anisotropy is most probably due to horizontal layering or aligned inclusions of a material with differing shear-wave velocity. If D″ is a graveyard for subducted lithosphere, a plausible explanation of the anisotropy may be the contrast between cold lithospheric mantle and material that formerly constituted the oceanic crust, which may have lower shear-wave velocity owing to the presence of melt.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Loper, D. E. & Lay, T. J. geophys. Res. 100, 6397–6420 (1995).

    Article  ADS  Google Scholar 

  2. Vinnik, L., Farra, V. & Romanowicz, B. Geophys. Res. Lett. 16, 519–522 (1989).

    Article  ADS  Google Scholar 

  3. Vinnik, L., Romanowicz, B., LeStunff, Y. & Makeyeva, L. Geophys. Res. Lett. 22, 1657–1660 (1995).

    Article  ADS  Google Scholar 

  4. Lay, T. & Young, C. J. Geophys. Res. Lett. 18, 1373–1376 (1991).

    Article  ADS  Google Scholar 

  5. Maupin, V. Phys. Earth Planet. Inter. 87, 1–,32 (1995).

    Article  ADS  Google Scholar 

  6. Masters, T. G., Bolton, H. F. & Shearer, P. M. Eos (abstr.) 73, 201 (1992).

    Google Scholar 

  7. Su, W.-J., Woodward, R. L. & Dziewonski, A. M. J. geophys. Res. 99, 16429–16454 (1994).

    Article  ADS  Google Scholar 

  8. Wysession, M. E., Okal, E. A. & Bina, C. R. J. geophys. Res. 97, 8749–8764 (1992).

    Article  ADS  Google Scholar 

  9. Lay, T. & Helmberger, D. V. Geophys. J. R. astr. Soc. 75, 799–837 (1983).

    Article  ADS  Google Scholar 

  10. Weber, M. & Davis, J. P. Geophys. J. Int. 102, 231–255 (1990).

    Article  ADS  Google Scholar 

  11. Garnero, E. J., Helmberger, D. V. & Grand, S. P. Phys. Earth planet. Inter. 79, 335–347 (1993).

    Article  ADS  Google Scholar 

  12. Kendall, J.-M. & Shearer, P. M. J. geophys. Res. 99, 11575–11590 (1994).

    Article  ADS  Google Scholar 

  13. Nataf, H.-C. & Houard, S. Geophys. Res. Lett. 20, 2371–2374 (1993).

    Article  ADS  Google Scholar 

  14. Kendall, J.-M. & Nangini, C. Geophys. Res. Lett. 23, 399–401 (1996).

    Article  ADS  Google Scholar 

  15. Silver, P. G. & Chan, W. W. Nature 335, 34–39 (1988).

    Article  ADS  Google Scholar 

  16. Bostock, M. G. & Cassidy, J. F. Geophys. Res. Lett. 22, 5–8 (1995).

    Article  ADS  Google Scholar 

  17. Vinnik, L. P., Kind, R., Kosarev, G. L. & Makeyeva, L. I. Geophys. J. Int. 99, 549–559 (1989).

    Article  ADS  Google Scholar 

  18. Meade, C. P., Silver, G. & Kaneshima, S. Geophys. Res. Lett. 22, 1293–1296 (1995).

    Article  ADS  Google Scholar 

  19. Doornbos, D. J., Spiliopoulos, S. & Stacey, F. D. Phys. Earth planet. Inter. 41, 225–239 (1986).

    Article  ADS  Google Scholar 

  20. Weber, M. Geophys. Res. Lett. 23, 2531–2534 (1994).

    Article  ADS  Google Scholar 

  21. Backus, G. E. J. geophys. Res. 67, 4427–4440 (1962).

    Article  ADS  Google Scholar 

  22. Tandon, G. P. & Weng, G. J. Polymer Composites 5, 327–333 (1984).

    Article  Google Scholar 

  23. Sayers, C. Int. J. Solids Structures 29, 2933–2944 (1992).

    Article  Google Scholar 

  24. Schmeling, H. Phys. Earth planet. Inter. 41, 34–57 (1985).

    Article  ADS  Google Scholar 

  25. Faul, U. H., Toomey, D. R. & Waff, H. S. Geophys. Res. Lett. 21, 29–32 (1994).

    Article  ADS  Google Scholar 

  26. Knittle, E. & Jeanloz, R. Science 251, 1438–1443 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Jeanloz, R. A. Rev. Earth planet. Sci. 18, 357–386 (1990).

    Article  ADS  Google Scholar 

  28. Creager, K. C. & Jordan, T. H. J. geophys. Res. 91, 3573–3589 (1986).

    Article  ADS  Google Scholar 

  29. Van der Hilst, R., Engdahl, R. & Spakman, W. Geophys. J. Int. 105, 264–302 (1993).

    Article  Google Scholar 

  30. Grand, S. P. J. geophys. Res. 99, 11591–11621 (1994).

    Article  ADS  Google Scholar 

  31. Silver, P. G., Carlson, R. W. & Olson, P. A. Rev. Earth planet. Sci. 16, 477–541 (1988).

    Article  ADS  CAS  Google Scholar 

  32. Christensen, U. R. & Hofmann, A. W. J. geophys. Res. 99, 19867–19884 (1994).

    Article  ADS  CAS  Google Scholar 

  33. Shen, G. & Lazor, P. J. geophys. Res. 100, 17699–17713 (1995).

    Article  ADS  CAS  Google Scholar 

  34. Engebretson, D. C., Kelley, K. P., Cashman, H. J. & Richards, M. A. GSA Today 2, 93–100 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kendall, JM., Silver, P. Constraints from seismic anisotropy on the nature of the lowermost mantle. Nature 381, 409–412 (1996). https://doi.org/10.1038/381409a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381409a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing