Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Essential role of the posterior morphogen nanos for germline development in Drosophila

Abstract

IN many animal groups, factors required for germline formation are localized in germ plasm1, a region of the egg cytoplasm. In Drosophila embryos, germ plasm is located in the posterior pole region and is inherited in pole cells, the germline progenitors. Transplantation experiments have demonstrated that germ plasm contains factors that can form germline2–4, and germ plasm also directs abdomen formation5. Genetic analysis has shown that a common mechanism directs the localization of the abdomen and germline-forming factors to the posterior pole6–12. The critical factor for abdomen formation is the nanos (nos) protein (nanos)13–15. Here we show that nos is also essential for germline formation in Drosophila; pole cells lacking nanos activity fail to migrate into the gonads, and so do not become functional germ cells. In such pole cells, gene expression, which normally initiates within the gonad, begins prematurely during pole-cell migration. Premature activation of genes in germline precursors may mean that these cells fail to develop normally. A function for nos protein in Drosophila germline formation is compatible with observations of its association with germ plasm in other animals16–18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eddy, E. M. Int. Rev. Cytol. 43, 229–280 (1975).

    Article  CAS  Google Scholar 

  2. Illmensee, K. & Mahowald, A. P. Proc. natn. Acad. Sci. U.S.A. 71, 1016–1020 (1974).

    Article  ADS  CAS  Google Scholar 

  3. Illmensee, K. & Mahowald, A. P. Exp. Cell Res. 97, 127–140 (1976).

    Article  CAS  Google Scholar 

  4. Okada, M. et al. Devl Biol. 37, 43–54 (1974).

    Article  CAS  Google Scholar 

  5. Frohnhöfer, H. G. et al. J. Embryol. exp. Morph. 97, 169–179 (1986).

    PubMed  Google Scholar 

  6. Lehmann, R. & Nüsslein-Volhard, C. Cell 47, 141–152 (1986).

    Article  CAS  Google Scholar 

  7. Manseau, L. J. & Schüpbach, T. Genes Dev. 3, 1437–1452 (1989).

    Article  CAS  Google Scholar 

  8. Schüpbach, T. & Wieschaus, E. Wilhelm Roux Arch. dev. Biol. 195, 302–317 (1986).

    Article  Google Scholar 

  9. Boswell, R. E. & Mahowaid, A. P. Cell 43, 97–104 (1985).

    Article  CAS  Google Scholar 

  10. Boswell, R. E. et al. Development 113, 373–384 (1991).

    CAS  Google Scholar 

  11. Ephrussi, A. & Lehmann, R. Nature 358, 387–392 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Smith, J. L. et al. Cell 70, 849–859 (1992).

    Article  CAS  Google Scholar 

  13. Lehmann, R. & Nüsslein-Volhard, C. Development 112, 679–691 (1991).

    CAS  Google Scholar 

  14. Wang, C. & Lehmann, R. Cell 66, 637–647 (1991).

    Article  CAS  Google Scholar 

  15. Wang, C. et al. Dev. Dynam. 199, 103–115 (1994).

    Article  CAS  Google Scholar 

  16. Curtis, D. et al. Development 121, 1899–1910 (1995).

    CAS  PubMed  Google Scholar 

  17. Forristall, C. et al. Development 121, 201–208 (1995).

    CAS  PubMed  Google Scholar 

  18. Mosquera, L. et al. Development 117, 377–386 (1993).

    CAS  Google Scholar 

  19. Barker, D. D. et al. Genes Dev. 6, 2312–2326 (1992).

    Article  CAS  Google Scholar 

  20. Hülskamp, M. et al. Nature 338, 629–632 (1989).

    Article  ADS  Google Scholar 

  21. Irish, V. et al. Nature 338, 646–648 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Struhl, G. Nature 338, 741–744 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Wharton, R. P. & Struhl, G. Cell 67, 955–967 (1991).

    Article  CAS  Google Scholar 

  24. Kobayashi, S. et al. Development 117, 885–893 (1993).

    CAS  PubMed  Google Scholar 

  25. Lehmann, R. & Nüsslein-Volhard, C. Dev. Biol. 119, 402–417 (1987).

    Article  CAS  Google Scholar 

  26. Oliver, B. et al. Genes Dev. 1, 913–923 (1987).

    Article  CAS  Google Scholar 

  27. Warrior, R. Devl Biol. 166, 180–194 (1994).

    Article  CAS  Google Scholar 

  28. Campos-Ortega, J. A. & Hartenstein, V. The Embryonic Development of Drosophila melanogaster. (Springer, New York, 1985).

    Book  Google Scholar 

  29. Kobayashi, S. & Okada, M. Biotechnol. Histochem. 68, 237–239 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, S., Yamada, M., Asaoka, M. et al. Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature 380, 708–711 (1996). https://doi.org/10.1038/380708a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380708a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing