Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of inflorescence architecture in Antirrhinum

Abstract

Flowering plants exhibit two types of inflorescence architecture: determinate and indeterminate. The centroradialis mutation causes the normally indeterminate inflorescence of Antirrhinum to terminate in a flower. We show that centroradialis is expressed in the inflorescence apex a few days after floral induction, and interacts with the floral-meristem-identity gene floricaula to regulate flower position and morphology. The protein CEN is similar to animal proteins that associate with lipids and GTP-binding proteins. We propose a model for how different inflorescence structures may arise through the action and evolution of centroradialis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weberling, F. Morphology of Flowers and Inflorescences (Cambridge Univ. Press, 1989).

    Google Scholar 

  2. Coen, E. A. Rev. Pl. Physiol. Pl. molec. Biol. 42, 241–279 (1991).

    Article  Google Scholar 

  3. Weigel, D. & Nilsson, O. Nature 377, 495–550 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Mandel, M. A. & Yanofsky, M. F. Nature 377, 522–524 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Coen, E. S. & Nugent, J. M. Development (suppl.) 107–116 (1994).

  6. Stebbins, G. L. Flowering Plants, Evolution above the Species Level (Harvard Univ. Press, MA, 1974).

    Book  Google Scholar 

  7. Kuckuck, H. & Schick, R. Z. indukt. Abstanim. -u. Vereblehre 56, 51–83 (1930).

    Google Scholar 

  8. Stubbe, H. Genetik und Zytologie von Antirrhinum L. sect Antirrhinum (VEB Gustav Frischer, Jena, 1966).

    Google Scholar 

  9. Coen, E. S. et al. Cell 63, 1311–1322 (1990).

    Article  CAS  Google Scholar 

  10. Huijser, P. et al. EMBO J. 11, 1239–1250 (1992).

    Article  CAS  Google Scholar 

  11. Carpenter, R. et al. Pl. Cell 7, 2001–2011 (1995).

    Article  CAS  Google Scholar 

  12. Carpenter, R. & Coen, E. S. Genes Dev. 4, 1483–1493 (1990).

    Article  CAS  Google Scholar 

  13. Coen, E. S. & Meyerowitz, E. M. Nature 353, 31–37 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Keeble, F., Pellew, C. & Jones, W. N. New Phytol 9, 68–77 (1910).

    Article  Google Scholar 

  15. Shannon, S. & Meeks-Wagner, D. R. Pl. Cell 3, 877–892 (1991).

    Article  CAS  Google Scholar 

  16. Alvarez, J., Guli, C. L., Yu, X.-H. & Smyth, D. R. Pl J. 2, 103–116 (1992).

    Article  Google Scholar 

  17. Grandy, D. K. et al. Molec. cell Endocr. 4, 1370–1376 (1990).

    Article  CAS  Google Scholar 

  18. Bucquoy, S., Jolles, P. & Schoentgen, F. Eur. J. Biochem 225, 1203–1210 (1994).

    Article  CAS  Google Scholar 

  19. Schwarz-Sommer, Z. et al. EMBO, J. 11, 251–263 (1992).

    Article  CAS  Google Scholar 

  20. Bradley, D., Carpenter, R., Sommer, H., Hartley, N. & Coen, E. Cell 72, 85–95 (1993).

    Article  CAS  Google Scholar 

  21. Coen, E. S., Robbins, T. P., Almeida, J., Hudson, A. & Carpenter, R. in Mobile DNA (eds Berg, D. E. & Howe, M. M.) 413–416 (American Society for Microbiology, Washington DC, 1989).

    Google Scholar 

  22. Jameson, B. & Wolf, H. Comput. Appl. Biosci. 4, 181–186 (1988).

    CAS  PubMed  Google Scholar 

  23. Pikielny, C. W., Hasan, G., Rouyer, F. & Rosbash, M. Neuron 12, 35–49 (1994).

    Article  CAS  Google Scholar 

  24. Lobos, E. et al. Molec. Biochem. Parasitol. 39, 135–146 (1990).

    Article  CAS  Google Scholar 

  25. Tripp, M. L., Bouchard, R. A. & Pinon, R. Molec. Microbiol. 3, 1319–1327 (1989).

    Article  CAS  Google Scholar 

  26. Robinson, L. C. & Tatchell, K. Molec. gen. Genet. 230, 241–250 (1991).

    Article  CAS  Google Scholar 

  27. Fobert, P. R., Coen, E. S., Murphy, G. J. P. & Doonan, J. H. EMBO J. 13, 616–624 (1994).

    Article  CAS  Google Scholar 

  28. Williams, M. H. & Green, P. B. Protoplasma 147, 77–79 (1988).

    Article  Google Scholar 

  29. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. J. molec. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  30. Luo, D., Coen, E. S., Doyle, S. & Carpenter, R. Pl. J. 1, 59–69 (1991).

    Article  CAS  Google Scholar 

  31. Simon, R., Carpenter, R., Doyle, S. & Coen, E. Cell 78, 99–107 (1994).

    Article  CAS  Google Scholar 

  32. Frohman, M. A., Dush, M. K. & Martin, G. R. Proc. natn. Acad. Sci. U.S.A. 85, 8998–9002 (1988).

    Article  ADS  CAS  Google Scholar 

  33. Bradley, D., Vincent, C., Carpenter, R. & Coen, E. Development (in the press).

  34. Hammer, K., Knüpffer, S. & Knüffer, H. Kulturpflanze 38, 91–117 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradley, D., Carpenter, R., Copsey, L. et al. Control of inflorescence architecture in Antirrhinum. Nature 379, 791–797 (1996). https://doi.org/10.1038/379791a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379791a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing