Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of depth-dependent viscosity on the planform of mantle convection

Abstract

LITHOSPHERIC plate motions at the Earth's surface result from thermal convection in the mantle1. Understanding mantle convection is made difficult by variations in the material properties of rocks as pressure and temperature increase from the surface to the core. The plates themselves result from high rock strength and brittle failure at low temperature near the surface. In the deeper mantle, elevated pressure may increase the effective viscosity by orders of magnitude2–5. The influence of depth-dependent viscosity on convection has been explored in two-dimensional numerical experiments6–8, but planforms must be studied in three dimensions. Although three-dimensional plan-forms can be elucidated by laboratory fluid dynamic experiments9,10, such experiments cannot simulate depth-dependent rheology. Here we use a three-dimensional spherical convection model11,12 to show that a modest increase in mantle viscosity with depth has a marked effect on the planform of convection, resulting in long, linear downwellings from the upper surface boundary layer and a surprisingly 'red' thermal heterogeneity spectrum, as observed for the Earth's mantle13. These effects of depth-dependent viscosity may be comparable to the effects of the plates themselves.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Turcotte, D. L. & Oxburgh, E. R. J. Fluid Mech. 28, 29–42 (1967).

    Article  ADS  Google Scholar 

  2. Sammis, C. G., Smith, J. C. & Schubert, G. J. geophys. Res. 86, 10707–10718 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Sammis, C. G., Smith, J. C., Schubert, G. & Yuen, D. A. J. geophys. Res. 82, 3747–3761 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Ringwood, A. E. J. Geol. 90, 611–643 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Jeanloz, R. & Thompson, A. B. Rev. Geophys. Space Phys. 21, 51–74 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Foster, T. D. J. geophys. Res. 74, 685–693 (1969).

    Article  ADS  Google Scholar 

  7. Gurnis, M. & Davies, G. F. Geophys. J. R. astr. Soc. 85, 523–541 (1986).

    Article  ADS  Google Scholar 

  8. Christensen, U. R. Geophys. J. R. astr. Soc. 77, 343–384 (1984).

    Article  ADS  Google Scholar 

  9. Busse, F. H. & Whitehead, J. A. J. Fluid Mech. 47, 305–320 (1971).

    Article  ADS  Google Scholar 

  10. White, D. B. J. Fluid Mech. 91, 247–286 (1988).

    Article  ADS  Google Scholar 

  11. Baumgardner, J. R., J. stat. Phys. 39, 501–511 (1985).

    Article  ADS  Google Scholar 

  12. Bunge, H.-P. & Baumgardner, J. R. Comput. Phys. 9, 207–215 (1995).

    Article  ADS  Google Scholar 

  13. Su, W. J. & Dziewonski, A. M. Nature 352, 121–126 (1991).

    Article  ADS  Google Scholar 

  14. Nakada, M. & Lambeck, K. Geophys. J. 96, 497–517 (1989).

    Article  ADS  Google Scholar 

  15. Hager, B. H. & Richards, M. A. Phil. Trans. R. Soc. Lond. 328, 309–327 (1989).

    Article  ADS  Google Scholar 

  16. Ricard, Y., Richards, M. A., Lithgow-Bertelloni, C. & Le Stunff, Y. J. geophys. Res. 98, 21895–21909 (1993).

    Article  ADS  Google Scholar 

  17. Richards, M. A. in Glacial Isostacy, Sea Level and Mantle Rheology (eds Sabadini, R., Lambeck, K. & Boschi, E.) 571–588 (Kluwer, Dordrecht, 1991).

    Book  Google Scholar 

  18. Gurnis, M. & Davies, G. F. Geophys. Res. Lett. 85, 541–544 (1986).

    Article  ADS  Google Scholar 

  19. Richard, Y., Sabadini, R. & Spada, G. J. geophys. Res. 97, 14223–14236 (1992).

    Article  ADS  Google Scholar 

  20. Cathles, L. M. The Viscosity of the Earth's Mantle (Princeton Univ. Press, 1975).

    Google Scholar 

  21. Peltier, W. R. A. Rev. Earth planet. Sci. 9, 119–225 (1981).

    Article  Google Scholar 

  22. Forte, A. M. & Peltier, W. R. J. geophys. Res. 96, 20131–20159 (1991).

    Article  ADS  Google Scholar 

  23. Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A. & Schubert, G. Nature 361, 699–704 (1993).

    Article  ADS  Google Scholar 

  24. Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A. & Schubert, G. J. geophys. Res. 99, 15877–15901 (1994).

    Article  ADS  Google Scholar 

  25. Wasserburg, G. J., MacDonald, G. J. F., Hoyle, F. & Fowler, W. A. Science 143, 465–467 (1964).

    Article  ADS  CAS  Google Scholar 

  26. Davies, G. F. J. geophys. Res. 93, 10467–10480 (1988).

    Article  ADS  Google Scholar 

  27. Sleep, N. H. J. geophys. Res. 95, 6715–6736 (1990).

    Article  ADS  Google Scholar 

  28. Jarvis, G. T. & Peltier, W. R. J. geophys. Res. 91, 435–451 (1986).

    Article  ADS  Google Scholar 

  29. Zhang, S. & Yuen, D. A., Earth planet. Sci. Lett. 132, 157–166 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Buffett, B. A., Gable, C. W. & O'Connell, R. J. J. geophys. Res. 99, 19885–19900 (1994).

    Article  ADS  Google Scholar 

  31. Lerch, F. J., Klosko, S. M. & Patch, G. B. NASA Tech. Memo 84, 986 (1983).

    Google Scholar 

  32. Inoue, H., Fukao, Y., Tanabe, K. & Ogata, Y. Phys. Earth planet. Inter. 59, 294–328 (1990).

    Article  ADS  Google Scholar 

  33. Gurnis, M. & Zhong, S. Geophys. Res. Lett. 18, 581–584 (1991).

    Article  ADS  Google Scholar 

  34. Tackley, P. J. Geophys. Res. Lett. 20, 2187–2190 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunge, HP., Richards, M. & Baumgardner, J. Effect of depth-dependent viscosity on the planform of mantle convection. Nature 379, 436–438 (1996). https://doi.org/10.1038/379436a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379436a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing