Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid energy dissipation and variability of the lo–Jupiter electrodynamic circuit

A Correction to this article was published on 04 April 1996

Abstract

THE electrodynamic interaction between Jupiter and the closest of its large moons, Io, is unique in the Solar system. Io's volcanoes eject a considerable amount of material into the inner jovian system (>1 tonne per second), much of it in the form of ions1; the motion of Io through Jupiter's powerful magnetic field in turn generates a million-ampere current2 between the charged near-Io environment and the planet's ionosphere. This current is presumably carried by Alfvén waves3, the electromagnetic equivalent of sound waves. Here we present far-ultraviolet observations of the atmospheric footprint of this current, which demonstrate that most of the energy is dissipated rapidly when the waves first encounter Jupiter's ionosphere; the position of the footprint varies with time. We see no evidence for the multiple ionospheric interactions that have been proposed to explain the structure of the radio emissions associated with these waves4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hill, T. W., Dessler, A. J. & Goertz, C. K. in Physics of the Jovian magnetosphere (ed. Dossler, A. J.) 353–394 (Cambridge Univ. Press, 1983).

    Book  Google Scholar 

  2. Piddington, J. H. & Drake, J. F. Nature 217, 935–937 (1968).

    Article  ADS  Google Scholar 

  3. Drell, S. D., Foley, H. M. & Ruderman, M. A. J. geophys. Res 70, 3131–3146 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  4. Gurnett, D. A. & Goertz, C. K. J. geophys. Res. 86, 712–722 (1981).

    ADS  Google Scholar 

  5. Rego, D., Prangé, R. & Gérard, J. C. J. geophys. Res. 99, 17075–17094 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Goertz, C. K. J. geophys. Res. 85, 2949–2956 (1980).

    Article  ADS  Google Scholar 

  7. Neubauer, F. M. J. geophys. Res. 85, 1171–1178 (1980).

    Article  ADS  Google Scholar 

  8. Acuna, M. H., Neubauer, F. M. & Ness, N. F. J. geophys. Res. 86, 8513–8521 (1981).

    Article  ADS  Google Scholar 

  9. Southwood, D. J., Kivelson, M. G., Walker, R. J. & Slavin, J. A. J. geophys. Res. 85, 5959–5968 (1980).

    Article  ADS  Google Scholar 

  10. Alexander, J. K. & Desch, M. D. J. geophys. Res. 89, 2689–2697 (1984).

    Article  ADS  Google Scholar 

  11. Zarka, P., Farges, T., Ryabov, B. P., Abada-Simon, M. & Denis, L. Geophys. Res. Lett. (in the press).

  12. Carr, T. D., Desch, M. D. & Alexander, J. K. in Physics of the Jovian Magnetosphere (ed. Dessler, A. J.) 226–284 (Cambridge Univ. Press, 1983).

    Book  Google Scholar 

  13. Connerney, J. E. P., Baron, R., Satoh, T. & Owen, T. Science 262, 1035–1038 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Leblanc, Y. J. geophys. Res. 86, 8546–8560 (1981).

    Article  ADS  Google Scholar 

  15. Goldstein, M. L. & Goertz, C. K. in Physics of the Jovian Magnetosphere (ed. Dessler, A. J.) 317–352 (Cambridge Univ. Press, 1983).

    Book  Google Scholar 

  16. Bagenal, F. & Leblanc, Y. Astr. Astrophys. 197, 311–319 (1988).

    ADS  Google Scholar 

  17. Zarka, P. Adv. Space Res. 12, 99–115 (1992).

    Article  ADS  Google Scholar 

  18. Bagenal, F. J. geophys. Res. 99, 11043–11062 (1994).

    Article  ADS  Google Scholar 

  19. Connerney, J. E. P. in Planteary Radio Emission lll (eds Rucker, H. O, Bauer, S. J. & Kaiser, M. L.) 13–33 (Austrian Acad. Sci. Press, Graz, 1992).

    Google Scholar 

  20. Reiner, M. J. et al. J. geophys. Res. 98, 13163–13176 (1993).

    Article  ADS  Google Scholar 

  21. Clarke, J. T. et al. (abstr) Bull. Am. astr. Soc. 26, 1592 (1994).

    ADS  Google Scholar 

  22. Gérard, J. C. et al. Geophys. Res. Lett. 22, 2685–2688 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prangé, R., Rego, D., Southwood, D. et al. Rapid energy dissipation and variability of the lo–Jupiter electrodynamic circuit. Nature 379, 323–325 (1996). https://doi.org/10.1038/379323a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379323a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing