Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Development of identical orientation maps for two eyes without common visual experience

Abstract

IN the mammalian visual cortex, many neurons are driven binocularly and response properties such as orientation preference or spatial frequency tuning are virtually identical for the two eyes1. A precise match of orientation is essential in order to detect disparity and is therefore a prerequisite for stereoscopic vision. It is not clear whether this match is accomplished by activity-dependent mechanisms together with the common visual experience normally received by the eyes2,3, or whether the visual system relies on other, perhaps even innate, cues to achieve this task4–7. Here we test whether visual experience is responsible for the match in a reverse-suturing experiment in which kittens were raised so that both eyes were never able to see at the same time. A comparison of the layout of the two maps formed under these conditions showed them to be virtually identical. Considering that the two eyes never had common visual experience, this indicates that correlated visual input is not required for the alignment of orientation preference maps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hubel, D. H. & Wiesel, T. N. J. Physiol. 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  2. Blakemore, C. & Van Sluyters, R. C. J. Physiol. 248, 663–716 (1975).

    Article  CAS  Google Scholar 

  3. Barlow, H. B. & Pettigrew, J. D. J. Physiol. 218, 98–100 (1971).

    Google Scholar 

  4. Hubel, D. H. & Wiesel, T. N. J. Neurophysiol. 26, 994–1002 (1963).

    Article  CAS  Google Scholar 

  5. Wiesel, T. N. & Hubel, D. H. J. comp. Neurol. 158, 307–318 (1974).

    Article  CAS  Google Scholar 

  6. Albus, K. & Wolf, W. J. Neurophysiol. 348, 153–185 (1984).

    CAS  Google Scholar 

  7. Braastad, B. O. & Heggelund, P. J. J. Neurophysiol. 53, 1158–1178 (1985).

    Article  CAS  Google Scholar 

  8. Wiesel, T. N. & Hubel, D. H. J. Neurophysiol. 26, 1003–1017 (1963).

    Article  CAS  Google Scholar 

  9. Imbert, M. & Buisseret, P. Expl Brain Res. 22, 25–36 (1975).

    Article  CAS  Google Scholar 

  10. Kim, D.-S. & Bonhoeffer, T. Nature 370, 370–372 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Blasdel, G. G. & Salama, G. Nature 321, 579–585 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Ts'o, D. Y., Frostig, R. D., Lieke, E. E. & Grinvald, A. Science 249, 417–420 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Bonhoeffer, T. & Grinvald, A. Nature 353, 429–431 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Bonhoeffer, T. & Grinvald, A. J. Neurosci. 13, 4157–4180 (1993).

    Article  CAS  Google Scholar 

  15. Movshon, J. A. J. Physiol. 261, 125–174 (1976).

    Article  CAS  Google Scholar 

  16. Sillito, A. M., Kemp, J. A., Berardi, J. & Berardi, N. Brain Res. 194, 517–520 (1980).

    Article  CAS  Google Scholar 

  17. Crook, J. M. & Eysel, U. T. J. Neurosci. 12, 1816–1825 (1992).

    Article  CAS  Google Scholar 

  18. Schwarz, C. & Bolz, J. J. Neurosci. 11, 2995–3007 (1991).

    Article  CAS  Google Scholar 

  19. Fitzpatrick, D., Zhang, Y., Schofield, B. R. & Muly, E. C. Soc. Neurosci. Abstr. 19, 179.2 (1993).

    Google Scholar 

  20. Bonhoeffer, T. & Kim, D.-S. in Challenges and Perspectives in Neuroscience (ed. Ottoson, D.) 117–138 (Elsevier, Oxford 1995).

    Google Scholar 

  21. Meister, M., Wong, R. O. L., Baylor, D. A. & Shatz, C. J. Science 252, 939–943 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Tanaka, K. J. Neurophysiol. 49, 1303–1318 (1983).

    Article  CAS  Google Scholar 

  23. Chapman, B., Zahs, K. R. & Stryker, M. P. J. Neurosci. 11, 1347–1358 (1991).

    Article  CAS  Google Scholar 

  24. Ferster, D. J. Neurosci. 6, 1284–1301 (1986).

    Article  CAS  Google Scholar 

  25. Reid, R. C. & Alonso, J. M. Nature 378, 281–284 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gödecke, I., Bonhoeffer, T. Development of identical orientation maps for two eyes without common visual experience. Nature 379, 251–254 (1996). https://doi.org/10.1038/379251a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379251a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing