Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Apoptosis and increased generation of reactive oxygen species in Down's syndrome neurons in vitro

Abstract

DOWN'S syndrome (DS) or trisomy 21 is the most common genetic cause of mental retardation1. Development of the DS brain is associated with decreased neuronal number and abnormal neuronal differentiation2–7, and adults with DS develop Alzheimer's disease8,9. The cause of the neurodegenerative process in DS is unknown. Here we report that cortical neurons from fetal DS and age-matched normal brain differentiate normally in culture, but DS neurons subsequently degenerate and undergo apoptosis whereas normal neurons remain viable. Degeneration of DS neurons is prevented by treatment with free-radical scavengers or catalase. Furthermore, DS neurons exhibit a three- to fourfold increase in intracellular reactive oxygen species and elevated levels of lipid peroxidation that precede neuronal death. These results suggest that DS neurons have a defect in the metabolism of reactive oxygen species that causes neuronal apoptosis. This defect may contribute to mental retardation early in life and predispose to Alzheimer's disease in adults.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Coyle, J. T., Oster-Granite, M. L. & Gearhart, J. D. Brain Res. Bull. 16, 773–787 (1986).

    Article  CAS  Google Scholar 

  2. Colon, E. J. Neuropediatrics 3, 362–376 (1972).

    Article  Google Scholar 

  3. Marin-Padilla, M. Brain Res. 44, 625–629 (1972).

    Article  CAS  Google Scholar 

  4. Takashima S., Becker, L. E., Armstrong, D. & Chen, T. Brain Res. 225, 1–21 (1981).

    Article  CAS  Google Scholar 

  5. Ross, M. H., Galaburda, A. M. & Kemper, T. L. Neurology 34, 909–916 (1984).

    Article  CAS  Google Scholar 

  6. Wisniewski, K. E., Laure-Kamionowska, M., Connell, F. & Wen, G. Y. The Neurobiology of Down Syndrome 29–44 (Raven, New York, 1986).

    Google Scholar 

  7. Becker, L., Mito, T., Takashima, S. & Onodera, K. Prog. clin. biol. Res. 373, 133–152 (1991).

    CAS  PubMed  Google Scholar 

  8. Mann, D. M. A. Mech. Ageing Dev. 43, 99–136 (1988).

    Article  CAS  Google Scholar 

  9. Lai, F. & Williams, R. S. Arch. Neurol. 46, 849–853 (1989).

    Article  CAS  Google Scholar 

  10. Busciglio, J., Yen, J. & Yankner, B. A. J. Neurochem. 61, 1565–1568 (1993).

    Article  CAS  Google Scholar 

  11. Wyllie, A. H., Kerr, F. F. R. & Currie, A. R. Int. Rev. Cytol. 68, 251–306 (1980).

    Article  CAS  Google Scholar 

  12. Brooksbank, B. W. L. & Balazs, R. Dev. Brain Res. 16, 37–44 (1984).

    Article  CAS  Google Scholar 

  13. Kedziora, J. & Bartosz, G. Free Rad. Biol. Med. 4, 317–330 (1988).

    Article  CAS  Google Scholar 

  14. Cathcart, R., Schwiers, E. & Ames, B. N. Analyt. Biochem. 134, 111–116 (1983).

    Article  CAS  Google Scholar 

  15. Bass, D. A. et al. J. Immun. 130, 1910–1917 (1983).

    CAS  PubMed  Google Scholar 

  16. Royall, J. A. & Ischiropoulus, H. Arch. Biochem. Biophys. 302, 348–355 (1993).

    Article  CAS  Google Scholar 

  17. Hedley, D. & Chow, S. Cytometry 13, 686–692 (1992).

    Article  CAS  Google Scholar 

  18. Kane, D. J. et al. Science 262, 1274–1277 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Greenlund, L. J. S., Deckwerth, T. L. & Johnson, E. M. Jr Neuron 14, 303–315 (1995).

    Article  CAS  Google Scholar 

  20. Koh, J.-Y., Gwag, B. J., Lobner, D. & Choi, D. W. Science 268, 573–575 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Jacobson, M. D. & Raff, M. C. Nature. 374, 814–816 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Shimizu, S. et al. Nature 374, 811–813 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Petit, T. L., LeBoutillier, J. C., Alfano, D. P. & Becker, L. E. Expl Neurol. 83, 13–23 (1984).

    Article  CAS  Google Scholar 

  24. Smith C. D. et al. Proc natn. Acad. Sci. U.S.A. 88, 10540–10543 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Mecocci, P., MacGarvey, U. & Beal, M. F. Ann. Neurol. 36, 747–751 (1994).

    Article  CAS  Google Scholar 

  26. Busciglio, J., Gabuzda, D. H., Matsudaira, P. & Yankner, B. A. Proc. natn. Acad. Sci. U.S.A. 90, 2092–2096 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busciglio, J., Yankner, B. Apoptosis and increased generation of reactive oxygen species in Down's syndrome neurons in vitro. Nature 378, 776–779 (1995). https://doi.org/10.1038/378776a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378776a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing