Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental confirmation of universality for a phase transition in two dimensions

Abstract

WHEN a system is poised at a critical point between two macroscopic phases, it exhibits dynamical structures on all available spatial scales, even though the underlying microscopic interactions tend to have a characteristic length scale. According to the universality hypothesis1,2, diverse physical systems that share the same essential symmetry properties will exhibit the same physical behaviour close to their critical points1,3–5; if this is so, even highly idealized models can be used to describe real systems accurately. Here we report experimental confirmation that the scaling behaviour of thermodynamic variables predicted by the universality hypothesis holds over 18 orders of magnitude. We show that the equation of state of a two-dimensional system (an atomic layer of ferromagnetic iron deposited on a non-magnetic substrate) closely follows the behaviour6 of the two-dimensional Ising model7—the first and most elementary statistical model of a macroscopic system with short-range interactions3.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Kadanoff, L. P. Physica A163, 1–14 (1990).

    Article  MathSciNet  Google Scholar 

  2. Baxter, R. J. Exactly Solved Models in Statistical Mechanics (Academic, London, 1982).

    MATH  Google Scholar 

  3. Levelt Sengers, A., Hocken, R. & Sengers, J. V. Physics Today 30, 42–51 (1977).

    Article  ADS  Google Scholar 

  4. De Boer, J. Physica 73, 1–27 (1974).

    Article  ADS  CAS  Google Scholar 

  5. Levelt Sengers, J. M. H. Physica 73, 73–106 (1974).

    Article  ADS  CAS  Google Scholar 

  6. Gaunt, D. S. & Domb, C. J. Phys. C3, 1442–1461 (1970).

    ADS  CAS  Google Scholar 

  7. Ising, E. Z. Phys. 31, 253–258 (1925).

    Article  ADS  CAS  Google Scholar 

  8. Kerkmann, D., Pescia, D. & Allenspach, R. Phys. Rev. Lett. 68, 686–689 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Back, C. H., Würsch, C., Kerkmann, D. & Pescia, D. Z. Phys. B96, 1–3 (1994).

    Article  Google Scholar 

  10. Yang, C. N. Phys. Rev. 85, 808–816 (1952).

    Article  ADS  Google Scholar 

  11. Domb, C. & Sykes, M. F. Proc. R. Soc. Lond. A 240, 214–222 (1957).

    ADS  CAS  Google Scholar 

  12. Milosevic, S. & Stanley, H. E. in Rendiconti S.I. F., Course LIX (eds Müller, K. H. & Rigamonti, A.) (North-Holland, Amsterdam, 1976).

    Google Scholar 

  13. Griffiths, R. B. Phys. Rev. 158, 176–87 (1967).

    Article  ADS  Google Scholar 

  14. Kumar, A., Krishnamurthy, H. R. & Gopal, E. S. R. Phys. Rep. 98, 57–143 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Abraham, D. B. Phys. Lett. 43A, 163–164 (1973).

    Article  ADS  Google Scholar 

  16. Barouch, E., McCoy, B. M. & Wu, T. T. Phys. Rev. Lett. 31, 1409–1411 (1973).

    Article  ADS  Google Scholar 

  17. Campuzano, J. C., Foster, M. S., Jennings, G., Willis, R. F. & UnertI, W. Phys. Rev. Lett. 54, 2684–2687 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Qiu, Z. Q., Pearson, J. & Bader, S. D. Phys. Rev. Lett. 67, 1646–1648 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Samuelsen, E. J. J. Phys. Chem. Solids 35, 785–793 (1974).

    Article  ADS  CAS  Google Scholar 

  20. Als-Nielsen, J., Birgenau, R. J., Guggenheim, H. J. & Shirane, G. Phys. Rev. B12, 4963–4979 (1975).

    Article  ADS  CAS  Google Scholar 

  21. Birgenau, R. J., Guggenheim, H. J. & Shirane, G. Phys. Rev. B8, 304–311 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Back, C., Würsch, C., Vaterlaus, A. et al. Experimental confirmation of universality for a phase transition in two dimensions. Nature 378, 597–600 (1995). https://doi.org/10.1038/378597a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378597a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing