Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Wednesday 24 May 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 378, 260 - 263 (16 November 1995); doi:10.1038/378260a0

Femtosecond molecular dynamics of tautomerization in model base pairs

A. Douhal, S. K. Kim & A. H. Zewail

Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA

HYDROGEN bonds commonly lend robustness and directionality to molecular recognition processes and supramolecular structures1,2. In particular, the two or three hydrogen bonds in Watson–Crick base pairs bind the double-stranded DNA helix and determine the complementarity of the pairing. Watson and Crick pointed out3, however, that the possible tautomers of base pairs, in which hydrogen atoms become attached to the donor atom of the hydrogen bond, might disturb the genetic code, as the tautomer is capable of pairing with different partners. But the dynamics of hydrogen bonds in general, and of this tautomerization process in particular, are not well understood. Here we report observations of the femtosecond dynamics of tautomerization in model base pairs (7-azaindole dimers) containing two hydrogen bonds. Because of the femtosecond resolution of proton motions, we are able to examine the cooperativity of formation of the tautomer (in which the protons on each base are shifted sequentially to the other base), and to determine the characteristic timescales of the motions in a solvent-free environment. We find that the first step occurs on a timescale of a few hundred femtoseconds, whereas the second step, to form the full tautomer, is much slower, taking place within several picoseconds; the timescales are changed significantly by replacing hydrogen with deuterium. These results establish the molecular basis of the dynamics and the role of quantum tunnelling.

------------------

References

1. Zewail, A. (ed.) The Chemical Bond: Structure and Dynamics (Academic, San Diego, 1992).
2. Ball, P. Designing the Molecular World (Princeton Univ. Press, 1994).
3. Watson, J. D. H. & Crick, F. H. C. Nature 171, 737−738 (1953). | PubMed | ISI | ChemPort |
4. Taylor, C. A., El Bayoumi, M. A. & Kasha, M. Proc. natn. Acad. Sci. U.S.A. 63, 253−260 (1969). | ChemPort |
5. Ingham, K. C. & El-Bayoumi, M. A. J. Am. chem. Soc. 96, 1674−1682 (1974). | Article | ChemPort |
6. Fuke, K. & Kaya, K. J. phys. Chem. 93, 614−621 (1989). | Article | ChemPort |
7. Hetherington, W. M., Micheels, R. H. & Eisenthal, K. B. Chem. Phys. Lett. 66, 230−233 (1979). | Article | ChemPort |
8. Share, P., Pereira, M., Sarisky, M., Repinec, S. & Hochstrasser, R. M. J. Luminescence 48/49, 204−208 (1991).
9. Zewail, A. H. Femtochemistry: Ultrafast Dynamics of the Chemical Bond (World Scientific, Singapore, 1994).
10. Yu, H.-T., Colucci, W. J., McLaughlin, M. L. & Barkley, M. D. J. Am. chem. Soc. 114, 8449−8454 (1992). | Article | ChemPort |
11. Kim, S. K. et al. J. phys. Chem. 99, 7421−7435 (1995). | Article | ChemPort |
12. Löwdin, P.-O. Adv. Quantum Chem. 2, 213−361 (1965).
13. Benderskii, V. A. & Goldanskii, V. I. Int. Rev. phys. Chem. 11, 1−70 (1992). | ChemPort |
14. Herek, J. L., Pedersen, S., Bañares, L. & Zewail, A. H. J. chem. Phys. 97, 9046−9061 (1992). | Article | ChemPort |
15. Cairns, J. J. molec. Biol. 6, 208−213 (1963). | PubMed | ISI | ChemPort |
16. Stryer, L. Biochemistry 3rd edn (Freeman, New York, 1988).
17. Rein, R. & Harris, F. E. J. chem. Phys. 42, 2177−2180 (1965). | Article | PubMed | ChemPort |



© 1995 Nature Publishing Group
Privacy Policy