Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries

Abstract

THE Arabidopsis gene SUPERMAN (SUP) is necessary for the proper spatial development of reproductive floral tissues1–3. Recessive mutations cause extra stamens to form interior to the normal third whorl stamens, at the expense of fourth whorl carpel development1–3. The mutant phenotype is associated with the ectopic expression of the B function genes, AP3 and PI, in the altered floral region, closer to the centre of the flower than in the wild type3, and ap3 sup and pi sup double mutants exhibit a phenotype similar to ap3 and pi single mutants. These findings led to SUP being interpreted as an upstream negative regulator of the B function organ-identity genes, acting in the fourth whorl2,3, to establish a boundary between stamen and carpel whorls. Here we show, using molecular cloning and analysis, that it is expressed in the third whorl and acts to maintain this boundary in developing flowers. The putative SUPERMAN protein contains one zinc-finger and a region resembling a basic leucine zipper motif, suggesting a function in transcriptional regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Meyerowitz, E. M. et al. Development 112 (suppl.), 157–168 (1991).

    Google Scholar 

  2. Schultz, E., Pickett, F. B. & Haughn, G. W. Pl. Cell 3, 1221–1227 (1991).

    Article  CAS  Google Scholar 

  3. Bowman, J. L. et al. Development 114, 599–615 (1992).

    CAS  PubMed  Google Scholar 

  4. Chang, C., Bowman, J. L., DeJohn, A. W., Lander, E. S. & Meyerowitz, E. M. Proc. natn. Acad. Sci. U.S.A. 85, 6856–6860 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Wilson, A. K., Pickett, F. B., Turner, J. C. & Estelle, M. Molec gen. Genet. 222, 377–383 (1990).

    Article  CAS  Google Scholar 

  6. Rosenberg, U. B. et al. Nature 319, 336–339 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Miller, J., McLachlan, A. D. & Klug, A. EMBO J. 4, 1609–1614 (1985).

    Article  CAS  Google Scholar 

  8. Soeller, W. C., Oh, C. E. & Kornberg, T. B. Molec cell. Biol. 13, 7961–7970 (1993).

    Article  CAS  Google Scholar 

  9. Gerber, H.-P. et al. Science 263, 808–811 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Han, K. & Manley, J. L. Genes Dev. 7, 491–503 (1993).

    Article  CAS  Google Scholar 

  11. Raikhel, N. Pl. Physiol. 100, 1627–1632 (1992).

    Article  CAS  Google Scholar 

  12. Ho, C.-Y., Adamson, J. G., Hodges, R. S. & Smith, M. EMBO J. 13, 1403–1413 (1994).

    Article  CAS  Google Scholar 

  13. Smyth, D. R., Bowman, J. L. & Meyerowitz, E. M. Pl. Cell 2, 755–767 (1990).

    Article  CAS  Google Scholar 

  14. Drews, G. N., Bowman, J. L. & Meyerowitz, E. M. Cell 65, 991–1002 (1991).

    Article  CAS  Google Scholar 

  15. Jack, T., Brockman, I. L. & Meyerowitz, E. M. Cell 68, 683–697 (1992).

    Article  CAS  Google Scholar 

  16. Goto, K. & Meyerowitz, E. M. Genes Dev. 8, 1548–1560 (1994).

    Article  CAS  Google Scholar 

  17. Jack, T., Fox, G. L. & Meyerowitz, E. M. Cell 76, 703–716 (1994).

    Article  CAS  Google Scholar 

  18. Bowman, J. L., Smyth, D. R. & Meyerowitz, E. M. Development 112, 1–20 (1991).

    CAS  PubMed  Google Scholar 

  19. Krizek, B. A. & Meyerowitz, E. M. Development (in the press).

  20. Gaiser, J. C., Robinson-Beers, K. & Gasser, C. S. Pl. Cell 7, 333–345 (1995).

    Article  CAS  Google Scholar 

  21. Perrimon, N. Cell 76, 781–784 (1994).

    Article  CAS  Google Scholar 

  22. Bechtold, N., Ellis, J. & Pelletier, G. C. r. Acad. Sci., Paris 316, 1194–1199 (1993).

    CAS  Google Scholar 

  23. Takatsuji, H., Mori, M., Benfey, P. N., Ren, L. & Chua, N.-H. EMBO J. 11, 241–249 (1992).

    Article  CAS  Google Scholar 

  24. Takatsuji, H., Nakamura, N. & Katsumoto, Y. Pl. Cell 6, 947–958 (1994).

    Article  CAS  Google Scholar 

  25. Pabo, C. O. & Sauer, R. T. A. Rev. Biochem. 61, 1053–1095 (1992).

    Article  CAS  Google Scholar 

  26. Yanofsky, M. F. et al. Nature 346, 35–39 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Grill, E. & Somerville, C. Molec. gen. Genet. 226, 484–490 (1991).

    Article  CAS  Google Scholar 

  28. Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F. & Meyerowitz, E. M. Cell 69, 843–859 (1992).

    Article  CAS  Google Scholar 

  29. Tague, B. W. & Goodman, H. M. Plant molec. Biol. 28, 267–279 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, H., Medrano, L. & Meyerowitz, E. Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378, 199–203 (1995). https://doi.org/10.1038/378199a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378199a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing