Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantification of pre-eruptive exsolved gas contents in silicic magmas

Abstract

WATER, carbon dioxide and sulphur are important in the evolution of magmas1,2and the physics of volcanic eruptions3,4. These volatile constituents occur in magmas as dissolved species in silicate melt, but can also form bubbles of exsolved gas if the magma is gas-saturated5. Quantifying the total (dissolved plus exsolved) pre-eruptive concentrations of magmatic volatiles is essential for understanding a wide range of magmatic processes. We present a method for quantifying both the amount and distribution of pre-eruptive exsolved gas in a crystallizing silicic magma body. Application to the 0.76-Myr-old6 Bishop rhyolitic tuff in eastern California reveals a pre-eruptive gradient in exsolved gas, with gas contents varying from less than 2 wt% in the deeper regions of the magma body to nearly 6 wt% near the top. This gradient would have promoted stable stratification of the magma body because exsolved gas lowers bulk magma density. More generally, exsolved gas in silicic magmas could contribute to the formation of many hydrothermal ore deposits and to the fluxes of volatile species from volcanic systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bowen, N. L. The Evolution of the Igneous Rocks (Princeton Univ. Press, Princeton, NJ, 1928).

    Google Scholar 

  2. Burnham, C. W. in The Evolution of the igneous Rocks: Fiftieth Anniversary Perspectives (ed. Yoder, H. S. Jr) 439–482 (Princeton Univ. Press, Princeton, NJ, 1979).

    Google Scholar 

  3. Wilson, L., Sparks, R. S. J. & Walker, G. P. L. Geophys. J. R. astr. Soc. 63, 117–148 (1980).

    Article  ADS  Google Scholar 

  4. Fisher, R. V. & Schmincke, H.-U. Pyrociastic Rocks (Springer, Berlin, 1984).

    Book  Google Scholar 

  5. Verhoogen, J. Univ. Calif. Bull. Dept. Geol. Sci. 28, 91–136 (1949).

    CAS  Google Scholar 

  6. Sarna-Wojcicki, A. M. & Pringle, M. S. Jr (abstr.) Eos 73, 633 (1992).

    Google Scholar 

  7. Lowenstern, J. B. in Magmas, Fluids and Ore Deposits (ed. Thompson, J. F. H.) 71–99 (Short Course 23, Mineral Assoc. Canada, Victoria, BC, 1995).

    Google Scholar 

  8. Gerlach, T. M., Westrich, H. R., Casadevall, T. J. & Finnegan, D. L. J. Volcan. Geotherm. Res. 62, 317–337 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Wallace, P. J. & Gerlach, T. M. Science 265, 497–499 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Gerlach, T. M. & McGee, K. A. Geophys. Res. Lett. 21, 2833–2836 (1994).

    Article  ADS  Google Scholar 

  11. Gerlach, T. M., Westrich, H. R. & Symonds, R. B. U.S. Geol. Surv. Prof. Pap. (in the press).

  12. Johnson, M. C., Anderson, A. T. Jr & Rutherford, M. J. in Volatiles in Magmas (eds Carroll, M. R. & Holloway, J. R.) 281–330 (Rev. Mineral. 30, Mineral. Soc. Am., Washington DC, 1994).

    Book  Google Scholar 

  13. Holloway, J. Geol. Soc. Am. Bull. 87, 1513–1518 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Lu, F., Anderson, A. T. Jr & Davis, A. M. Contr. Miner. Petrol. 110, 113–120 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Michael, P. J. Geology 11, 31–34 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Cameron, K. L. Science 224, 411–413 (1984).

    Article  Google Scholar 

  17. Lu, F. thesis, Univ. Chicago (1991).

  18. Skirius, C. M. thesis, Univ. Chicago (1990).

  19. Hildreth, E. W. thesis, Univ. California at Berkeley (1977).

  20. Luhr, J. F. J. Petrol. 31, 1071–1114 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Ihinger, P. D., Hervig, R. L. & McMillan, P. F. in Volatiles in Magmas (eds Carroll, M. R. &Holloway, J. R.) 67–121 (Rev. Mineral. 30, Mineral. Soc. Am., Washington DC, 1994).

    Book  Google Scholar 

  22. Blank, J. G., Stolper, E. M. & Carroll, M. R. Earth planet. Sci. Lett. 119, 27–36 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Silver, L. A., Ihinger, P. D. & Stolper, E. Contr. Miner. Petrol. 104, 142–162 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Burnham, C. W. & Jahns, R. H. Am. J. Sci. 260, 721–745 (1962).

    Article  ADS  CAS  Google Scholar 

  25. Holloway, J. R. in Thermodynamics in Geology (ed. Fraser, D. G.) 161–181 (Reidel, Dordrecht, Holland, 1977).

    Book  Google Scholar 

  26. Lange, R. A. & Carmichael, I. S. E. in Modern Methods in Igneous Petrology (eds Nicholls, J. & Russell, J. K.) 25–64 (Rev. Mineral. 24, Mineral. Soc. Am., Washington DC, 1990).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallace, P., Anderson, A. & Davis, A. Quantification of pre-eruptive exsolved gas contents in silicic magmas. Nature 377, 612–616 (1995). https://doi.org/10.1038/377612a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377612a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing