Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Tuesday 26 September 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 377, 606 - 608 (19 October 2002); doi:10.1038/377606a0

Electron acceleration from the breaking of relativistic plasma waves

A. Modena*, Z. Najmudin*, A. E. Dangor*, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow§, C. Danson, D. Neely & F. N. Walsh

*Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK
University of California at Los Angeles, Los Angeles, California 90024, USA
LULI, Ecole Polytechnique, Palaiseau, France
§ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
Rutherford Appleton Laboratory, Didcot, UK

ELECTRONS in a plasma undergo collective wave-like oscillations near the plasma frequency. These plasma waves can have a range of wavelengths and hence a range of phase velocities1. Of particular note are relativistic plasma waves2,3, for which the phase velocity approaches the speed of light; the longitudinal electric field associated with such waves can be extremely large, and can be used to accelerate electrons (either injected externally or supplied by the plasma) to high energies over very short distances2á¤-4. The maximum electric field, and hence maximum acceleration rate, that can be obtained in this way is determined by the maximum amplitude of oscillation that can be supported by the plasma5á¤-8. When this limit is reached, the plasma wave is said to ᤘbreakᤙ. Here we report observations of relativistic plasma waves driven to breaking point by the Raman forward-scattering instability9,10 induced by short, high-intensity laser pulses. The onset of wave-breaking is indicated by a sudden increase in both the number and maximum energy (up to 44 MeV) of accelerated plasma electrons, as well as by the loss of coherence of laser light scattered from the plasma wave.

------------------

References

1. Stix, T. H. The Theory of Plasma Waves (McGraw-Hill, New York, 1962).
2. Dawson, J. M. Scient. Am. 260, 54−61 (1989).
3. Tajima, T. & Dawson, J. M. Phys. Rev. Lett. 45, 267−270 (1979).
4. Joshi, C. et al. Nature 311, 525−529 (1984). | Article |
5. Dawson, J. M. Phys. Rev. 113, 383−387 (1959). | Article |
6. Coffey, T. P. Phys. Fluids 14, 1402−1406 (1971). | Article |
7. Akhiezer, A. I. & Polovin, R. V. Sov. Phys. JETP 3, 696−699 (1956).
8. Katsouleas, T. & Mori, W. B. Phys. Rev. Lett. 61, 90−93 (1988). | Article | PubMed |
9. Forslund, D. W., Kindel, J. M. & Lindman, E. L. Phys. Fluids 18, 1002−1016 (1975). | Article |
10. Mori, W. B., Decker, L. D., Hinkel, D. E. & Katsouleas, T. Phys. Rev. Lett. 72, 1482−1485 (1994). | Article | PubMed | ChemPort |
11. Chen, F. F. Phys. Scripta T30, 14−23 (1990).
12. Joshi, C., Tajima, T., Dawson, J. M., Baldis, H. A. & Ebrahim, N. A. Phys. Rev. Lett. 47, 1285−1288 (1981). | Article | ISI | ChemPort |
13. Turner, R. E. et al. Phys. Rev. Lett. 57, 1725−1728 (1986). | Article | PubMed | ChemPort |
14. Batha, S. H. et al. Phys. Rev. Lett. 66, 2324−2327 (1991). | Article | PubMed | ChemPort |
15. Nakajima, K. et al. Phys. Rev. Lett. 74, 4428−4431 (1995). | Article | PubMed | ChemPort |
16. Coverdale, C. A. et al. Phys. Rev. Lett. 74, 4659−4662 (1995). | Article | PubMed | ChemPort |
17. Everett, M. J. et al. Phys. Rev. Lett. 74, 1355−1358 (1995). | Article | PubMed | ChemPort |
18. Sprangle, P., Esarey, E., Ting, A. & Joyce, G. Appl. Phys. Lett. 53, 2146−2148 (1988). | Article | ISI |
19. Sessler, A. M. Physics Today 41, 26−34 (1988). | ChemPort |
20. Kitagawa, Y. et al. Phys. Rev. Lett. 68, 48−51 (1992). | Article | PubMed | ISI |
21. Clayton, C. E. et al. Phys. Rev. Lett. 70, 37−40 (1993). | Article | PubMed | ChemPort |
22. Everett, M. et al. Nature 368, 527−529 (1994). | Article | ISI |
23. Ebrahim, N. A. J. appl. Phys. 76, 7645−7647 (1994). | Article | ChemPort |
24. Decker, C. D., Mori, W. B. & Katsouleas, T. Phys. Rev. E50, R3338−R3341 (1994). | ChemPort |
25. Tzeng, K-C., Mori, W. B. & Decker, C. D. Phys. Rev. Lett. (submitted).
26. Danson, C. N. et al. Opt. Commun. 103, 392−397 (1993). | Article | ChemPort |
27. Brückner, R. thesis, Univ. Orléans (1994).
28. Jackson, J. D. Classical Electrodynamics (Wiley, New York, 1975).
29. Fraser, J. S. & Sheffield, R. L. IEEE J. quant. Electr. 23, 1489−1496 (1987).



© 2002 Nature Publishing Group
Privacy Policy