Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The observational case for a low-density Universe with a non-zero cosmological constant

Abstract

OBSERVATIONS are providing progressively tighter constraints on cosmological models advanced to explain the formation of large-scale structure in the Universe. These include recent determinations of the Hubble constant1á¤-3 (which quantifies the present expansion rate of the Universe) and measurements of the anisotropy of the cosmic microwave background4,5. Although the limits imposed by these diverse observations have occasionally led to suggestions6 that cosmology is facing a crisis, we show here that there remains a wide range of cosmological models in good concordance with these constraints. The combined observations point to models in which the matter density of the Universe falls well below the critical energy density required to halt its expansion. But they also permit a substantial contribution to the energy density from the vacuum itself (a positive ᤘcosmological constantᤙ), sufficient to recover the critical density favoured by the simplest inflationary models. The observations do not yet rule out the possibility that we live in an ever-expanding ᤘopenᤙ Universe, but a Universe having the critical energy density and a large cosmological constant appears to be favoured.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Freedman, W. L. et al. Nature 371, 757–762 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Riess, A. G., Press, W. H. & Kirshner, R. P. Astrophys. J. 438, L17–L20 (1995).

    Article  ADS  Google Scholar 

  3. Hamuy, M. et al. Astrophys. J. 109, 1–13 (1995).

    Google Scholar 

  4. Smoot, G. F. et al. Astrophys. J. 396, L1–L5 (1992).

    Article  ADS  Google Scholar 

  5. Steinhardt, P. J. Int. J. mod. Phys. A10, 1091–1124 (1995).

    Article  ADS  Google Scholar 

  6. Bolte, M. & Hogan, C. J. Nature 376, 399–402 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Guth, A. H. Phys. Rev. D23, 347–356 (1981).

    ADS  CAS  Google Scholar 

  8. Linde, A. Phys. Lett. 108B, 389–392 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Albrecht, A. & Steinhardt, P. J. Phys. Rev. Lett. 48, 1220–1223 (1982).

    Article  ADS  Google Scholar 

  10. Bardeen, J., Steinhardt, P. J. & Turner, M. S. Phys. Rev. D28, 679–693 (1983).

    ADS  Google Scholar 

  11. Guth, A. H. & Pi, S.-Y. Phys. Rev. Lett. 49, 1110–1113 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Starobinskii, A. A. Phys. Lett. B117, 175–178 (1982).

    Article  Google Scholar 

  13. Hawking, S. W. Phys. Lett. B115, 295–298 (1982).

    Article  Google Scholar 

  14. Harrison, E. Phys. Rev. D1, 2726–2730 (1970).

    Article  ADS  Google Scholar 

  15. Zel'dovich, Ya. B. Mon. Not. R. astr. Soc. 160, 1p–3p (1972).

    Article  ADS  Google Scholar 

  16. Peebles, P. J. E. & Yu, J. T. Astrophys. J. 162, 815–836 (1970).

    Article  ADS  Google Scholar 

  17. Davis, R. et al. Phys. Rev. Lett. 69, 1856–1859 (1994).

    Article  ADS  Google Scholar 

  18. Bunn, E. F. & Sugiyama, N. Astrophys.J. 446, 49–53 (1994).

    Article  ADS  Google Scholar 

  19. Copi, C., Schramm, D. N. & Turner, M. S. Science 267, 192–199 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Kolb, E. W. & Turner, M. S. The Early Universe Ch. 9 (Addison-Wesley, Reading,MA. 1990).

    MATH  Google Scholar 

  21. Ratra, B. & Peebles, P. J. E. Astrophys. J. 432, L5–L9 (1994).

    Article  ADS  Google Scholar 

  22. Kamionkowski, M., Spergel, D. N. & Sugiyama, N. Astrophys. J. 426, L57–L60 (1994).

    Article  ADS  Google Scholar 

  23. Fukugita, M., Hogan, J.C. & Peebles, P. J. E. Nature 336, 309–312 (1993).

    Article  ADS  Google Scholar 

  24. Jimenez, R. et al. (in preparation).

  25. Carroll, S. M., Press, W. H. & Turner, E. L. A. Rev. Astrophys. 30, 499–542 (1992).

    Article  ADS  Google Scholar 

  26. Fukugita, M. & Turner, E. L. Mon. Not. R. astr. Soc. 253, 99–106 (1991).

    Article  ADS  Google Scholar 

  27. Maoz, D. & Rix, H.-W. Astrophys. J. 416, 425–443 (1993).

    Article  ADS  Google Scholar 

  28. Peebles, P. J. E. Physical Cosmology (Princeton Univ. Press, 1994).

    Google Scholar 

  29. Strauss, M. A. & Willick, J. A. Phys. Rep. (in the press).

  30. White, S. D. M., Navarro, J. F., Evrard, A. E. & Frenk, C. S. Nature 366, 429–433 (1993).

    Article  ADS  CAS  Google Scholar 

  31. Peacock, J. A. & Dodds, S. J. Mon. Not. R. astr. Soc. 267, 1020–1034 (1994).

    Article  ADS  Google Scholar 

  32. Turner, M. S., Steigman, G. & Krauss, L. Phys. Rev. Lett. 52, 2090–2093 (1984).

    Article  ADS  CAS  Google Scholar 

  33. Peebles, P. J. E. Astrophys. J. 284, 439–444 (1984).

    Article  ADS  CAS  Google Scholar 

  34. Kofman, L. & Starobinskii, A. A. Soviet Astr. Lett. 11, 271–274 (1985).

    ADS  Google Scholar 

  35. Efstathiou, G., Sutherland, W. J. & Maddox, S. J. Nature 348, 705–707 (1990).

    Article  ADS  Google Scholar 

  36. Coles, P. & Ellis, R. Nature 370, 609–702 (1994).

    Article  ADS  Google Scholar 

  37. Krauss, L. & Turner, M. S. Class. Quantum Grav. (submitted).

  38. White, S. D. M., Efstathiou, G. & Frenck, C. S. Mon. Not. R. astr. Soc. 262, 1023–1028 (1993).

    Article  ADS  Google Scholar 

  39. Bond, J. R. in Cosmology and Large Scale Structure (ed. Schaeffer, R.) (Eisevier Science Publ., in the press).

  40. Gorski, et al. Astrophys. J. 430, L89 (1994).

    Article  ADS  Google Scholar 

  41. Gorski, K., Ratra, D., Sugiyama, N. & Banday, A. J. Astrophys. J. 444, L67–L71 (1995).

    Article  ADS  Google Scholar 

  42. Bond, J. R. et al. Phys. Rev. Lett. 72, 13–16 (1994).

    Article  ADS  CAS  Google Scholar 

  43. Jungman, G., Kamionkowski, M. & Kosowsky, A. preprint astro-ph/9507080 (1985) (Syracuse Univ., 1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostriker, J., Steinhardt, P. The observational case for a low-density Universe with a non-zero cosmological constant. Nature 377, 600–602 (1995). https://doi.org/10.1038/377600a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377600a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing