Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High concentration of atmospheric 14C during the Younger Dryas cold episode

Abstract

THE various reservoirs of the global carbon cycle, with their very different residence times, are linked by a complex and evolving system of exchanges for which natural radiocarbon is the most robust tracer1. Any change in the sizes of these reservoirs, or the exchange rates between them, could perturb the 14C/12C ratio of each other reservoir, and the smallest of them—the atmosphere— would be the most sensitive. In particular, high-resolution reconstructions of past atmospheric 14C/12C ratios may provide important clues to the mechanisms of abrupt climate change. Annually laminated lake sediments potentially provide an optimal record in this respect, as they preserve information about both past atmospheric 14C levels and climate changes, providing absolutely dated material beyond the range of tree-ring chronologies and, unlike corals, directly monitor 14C concentrations in atmospheric CO2. Here we report the relationship between atmospheric 14C concentration and climate changes during the Younger Dryas and early Holocene periods, derived from analyses of the annually laminated sediments of Lake Gśoscia¸ażz, in central Poland. We find that atmospheric 14C concentrations during the Younger Dryas were abnormally high, which we interpret as a reduced ventilation rate of the deep ocean, most probably as a result of a decrease in intensity of the North Atlantic Deep Water formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stuiver, M. & Braziunas, T. F. Holocene 3, 289–305 (1993).

    Article  ADS  Google Scholar 

  2. Kromer, B. & Becker, B. Radiocarbon 35, 125–136 (1993).

    Article  CAS  Google Scholar 

  3. Peteet, D. in The Last Deglaciation. Absolute and Radiocarbon Chronologies (eds Bard, E. & Broecker, W. S.) 327–344 (NATO ASI ser. I, Springer, Berlin, 1992).

    Book  Google Scholar 

  4. Becker, B., Kromer, B. & Trimborn, P. Nature 353, 647–649 (1991).

    Article  ADS  Google Scholar 

  5. Johnsen, S. J. et al. Nature 359, 311–313 (1992).

    Article  ADS  Google Scholar 

  6. Taylor, K. C. et al. Nature 361, 432–436 (1993).

    Article  ADS  Google Scholar 

  7. Goslar, T. et al. Quat. Sci. Rev. 12, 287–294 (1993).

    Article  ADS  Google Scholar 

  8. Meese, D. A. et al. Nature 266, 1680–1682 (1994).

    CAS  Google Scholar 

  9. Rózański, K. Chem. Geol. 52, 249–363 (1985).

    Google Scholar 

  10. Pearson, G. W. Radiocarbon 28, 292–299 (1986).

    Article  CAS  Google Scholar 

  11. Alley, R. B. et al. Nature 362, 527–529 (1993).

    Article  ADS  Google Scholar 

  12. Hajdas, I. et al. Clim. Dyn. 9, 107–116 (1993).

    Article  Google Scholar 

  13. White, J. W. C., Lawrence, J. R. & Broecker, W. S. Geochim. cosmochim. Acta 58, 851–862 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Bard, E., Arnold, M., Fairbanks, R. G. & Hamelin, B. Radiocarbon 35, 191–199 (1993).

    Article  CAS  Google Scholar 

  15. Edwards, R. L. et al. Science 260, 962–967 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Bard, E., Hamelin, B., Fairbanks, R. G. & Zindler, A. Nature 345, 405–410 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Stuiver, M. & Braziunas, T. Radiocarbon 35, 137–190 (1993).

    Article  CAS  Google Scholar 

  18. Tric, E. et al. J. geophys. Res. 97, 9337–9351 (1992).

    Article  ADS  Google Scholar 

  19. Oeschger, H., Siegenthaler, U., Schotterer, U. & Gugelmann, A. Tellus 27, 169–192 (1975).

    Article  ADS  Google Scholar 

  20. Broecker, W. S. et al. Global biogeochem. Cycles 4, 103–117 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Lal, D. in Proc. 45th Conf. Solar—Terrestrial Relationships and the Earth Environment in the Last Millennia 216–233 (Soc. Italiana di Fisica, Bologna, 1988).

    Google Scholar 

  22. Stuiver, M., Braziunas, T., Becker, B. & Kromer, B. Quat. Res. 35, 1–24 (1991).

    Article  CAS  Google Scholar 

  23. Neftel, A., Oeschger, H., Staffelbach, T. & Stauffer, B. Nature 331, 609–611 (1988).

    Article  ADS  Google Scholar 

  24. Lal, D. & Revelle, R. Nature 308, 344–346 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Keir, R. S. Earth planet. Sci. Lett. 64, 445–459 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Mayewski, P. A. et al. Science 261, 195–197 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Broecker, W. S. & Denton, G. H. Geochim. cosmochim. Acta 53, 2465–2501 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Boyle, E. A. & Keigwin, L. Nature 330, 35–40 (1987).

    Article  ADS  CAS  Google Scholar 

  29. Boyle, E. A. Paleoceanography 3, 471–489 (1988).

    Article  ADS  Google Scholar 

  30. Keigwin, L. D., Jones, G. A., Lehman, S. J. & Boyle, E. A. J. geophys. Res 96, 16811–16826 (1991).

    Article  ADS  Google Scholar 

  31. Keigwin, L. D. & Lehman, S. J. Paleoceanography 9, 185–194 (1994).

    Article  ADS  Google Scholar 

  32. Jansen, E. & Veum, T. Nature 343, 612–616 (1990).

    Article  ADS  CAS  Google Scholar 

  33. Charles, C. D. & Fairbanks, R. G. Nature 355, 416–419 (1992).

    Article  ADS  Google Scholar 

  34. Lehman, S. J. & Keigwin, L. D. Nature 356, 757–762 (1992).

    Article  ADS  Google Scholar 

  35. Shackleton, N. J. et al. Nature 335, 708–711 (1988).

    Article  ADS  Google Scholar 

  36. Bard, E. et al. Earth planet. Sci. Lett. 126, 275–287 (1994).

    Article  ADS  Google Scholar 

  37. Björck, S. & Digerfeldt, J. in Climatic Changes on a Yearly to Millennial Bases (eds Mörner, N. A. & Karlen, W.) 37–56 (Reidel, Dordrecht, 1984).

    Book  Google Scholar 

  38. Broecker, W. S. Nature 372, 421–424 (1994).

    Article  ADS  CAS  Google Scholar 

  39. Ralska-Jasiewiczowa, M., van Geel, B., Goslar, T. & Kuc, T. Sver. Geol. Unders. Ca81, 257–268 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goslar, T., Arnold, M., Bard, E. et al. High concentration of atmospheric 14C during the Younger Dryas cold episode. Nature 377, 414–417 (1995). https://doi.org/10.1038/377414a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377414a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing