Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Tuesday 19 September 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 376, 765 - 768 (31 August 2002); doi:10.1038/376765a0

A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus

Shigeru Kondo* & Rihito Asai

*Kyoto University Centre for Molecular Biology and Genetics, Shogoin-Kawaharacho 53, Sakyo-ku, Kyoto, Japan
Kyoto University Seto Marine Biological Laboratory, Shirahama-cho, Nishimuro-gun, Wakayama, Japan

IN 1952, Turing proposed a hypothetical molecular mechanism, called the reaction–diffusion system1, which can develop periodic patterns from an initially homogeneous state. Many theoretical models based on reaction–diffusion have been proposed to account for patterning phenomena in morphogenesis2–4, but, as yet, there is no conclusive experimental evidence for the existence of such a system in the field of biology5–8. The marine angelfish, Pomacanthus has stripe patterns which are not fixed in their skin. Unlike mammal skin patterns, which simply enlarge proportionally during their body growth, the stripes of Pomacanthus maintain the spaces between the lines by the continuous rearrangement of the patterns. Although the pattern alteration varies depending on the conformation of the stripes, a simulation program based on a Turing system can correctly predict future patterns. The striking similarity between the actual and simulated pattern rearrangement strongly suggests that a reaction–diffusion wave is a viable mechanism for the stripe pattern of Pomacanthus.

------------------

References

1. Turing, A. M. Phil. Trans. R. Soc. B237, 37−72 (1952).
2. Kauffman, S. A. in Pattern Formation (eds Malacinsky, G. M. & Bryant, S.) 73−102 (Macmillan, New York, 1984).
3. Meinhardt, H. Models of Biological Pattern Formation (Academic, London, 1982).
4. Murray, J. D. Scient. Am. 258, 80−87 (1988).
5. Winfree, A. T. Nature 352, 568−569 (1991). | Article |
6. Lengyel, I. & Epstein, I. R. Science 251, 650−652 (1991). | ISI | ChemPort |
7. Ouyang, Q. & Swinney, H. L. Nature 352, 610−612 (1991). | Article | ISI |
8. Pool, R. Science 251, 627 (1991). | PubMed | ChemPort |
9. Dawes, E. A. Quantitative Problems in Biology (Longman, London, 1956).
10. Bunning, E. & Sagromsky, H. Z. Naturf. B3, 203−216 (1948).
11. Lacalli, T. C. Phil. Trans. R. Soc. B294, 547−588 (1981).
12. Meinhardt, H. Rep. Progr. Phys. 55, 797−849 (1992).
13. Segel, L. A. & Jackson, J. L. J. theor. Biol 37, 545−549 (1972). | Article | PubMed | ISI | ChemPort |
14. Wigglesworth, V. B. J. exp. Biol. 17, 180−200 (1940).
15. Meinhardt, H. Development (suppl.) 107, 169−180 (1989). | PubMed |



© 2002 Nature Publishing Group
Privacy Policy