Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Saturday 27 May 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 376, 46 - 49 (06 July 2002); doi:10.1038/376046a0

Scaling behaviour in the dynamics of an economic index

Rosario N. Mantegna & H. Eugene Stanley

Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA

THE large-scale dynamical properties of some physical systems depend on the dynamical evolution of a large number of nonlinearly coupled subsystems. Examples include systems that exhibit self-organized criticality1 and turbulence2,3. Such systems tend to exhibit spatial and temporal scaling behaviour–power–law behaviour of a particular observable. Scaling is found in a wide range of systems, from geophysical4 to biological5. Here we explore the possibility that scaling phenomena occur in economic systemsá-especially when the economic system is one subject to precise rules, as is the case in financial markets6–8. Specifically, we show that the scaling of the probability distribution of a particular economic index–the Standard & Poor's 500–can be described by a non-gaussian process with dynamics that, for the central part of the distribution, correspond to that predicted for a Lévy stable process9–11. Scaling behaviour is observed for time intervals spanning three orders of magnitude, from 1,000 min to 1 min, the latter being close to the minimum time necessary to perform a trading transaction in a financial market. In the tails of the distribution the fall-off deviates from that for a Lévy stable process and is approximately exponential, ensuring that (as one would expect for a price difference distribution) the variance of the distribution is finite. The scaling exponent is remarkably constant over the six-year period (1984-89) of our data. This dynamical behaviour of the economic index should provide a framework within which to develop economic models.

------------------

References

1. Bak, B., Tang, C. & Wiesenfeld, K. Phys. Rev. Lett. 59, 381−384 (1987). | Article | PubMed | ISI |
2. Nelkin, M. Adv. Phys. 43, 143−181 (1994).
3. Meneveau, C. & Sreenivasan, K. R. J. Fluid. Mech. 224, 429−484 (1991).
4. Olami, Z., Feder, H. J. S. & Christensen, K. Phys. Rev. Lett. 68, 1244−1247 (1992). | Article | PubMed | ISI |
5. Peng, C.-K. et al. Phys. Rev. Lett. 70, 1343−1346 (1993). | Article | PubMed | ISI |
6. Brock, W. A. in The Economy as a Complex Evolving System (ed. Anderson, P. W., Arrow, J. K. & Pines, D.) 77−97 (Addison-Wesley, Redwood City, 1988).
7. Brock, W. A., Hsieh, D. A. & LeBaron, B. Nonlinear Dynamics, Chaos, and Instability. Statistical Theory and Economic Inference (MIT Press, Cambridge, MA, 1991).
8. Scheinkman, J. A. & LeBaron, B. J. Business 62, 311−327 (1989). | Article |
9. Shlesinger, M. F., Frisch, U. & Zaslavsky, G. (eds) Lévy Flights and Related Phenomena in Physics (Springer, Berlin, 1995).
10. Bouchaud, J.-P. & Georges, A. Phys. Rep. 195, 127−293 (1990). | Article |
11. Shlesinger, M. F., Zaslavsky, G. M. & Klafter, J. Nature 363, 31−37 (1993). | Article | ISI | ChemPort |
12. Bachelier, L. J. B. Théorie de la Speculation (Gauthier-Villars, Paris, 1900).
13. Osborne, M. F. M. Oper. Res. 7, 145−173 (1959).
14. Mandelbrot, B. B. J. Business 36, 394−419 (1963). | Article | ISI |
15. Fama, E. F. J. Business 38, 34−105 (1965). | Article |
16. Clark, P. K. Econometrica 41, 135−155 (1973).
17. Engle, R. F. Econometrica 50, 987−1007 (1982). | ISI |
18. Bollerslev, T., Chou, R. Y. & Kroner, K. F. J. Econometrics 52, 5−59 (1992). | Article |
19. Officer, R. R. J. Am. statist. Ass. 67, 807−812 (1972).
20. Hsu, D.-A., Miller, R. B. & Wichern, D. W. J. Am. statist. Ass. 69, 108−113 (1974).
21. Lau, A. H.-L., Lau, H.-S. & Wingender, J. R. J. Business Econ. Statist. 8, 217−223 (1990).
22. Akgiray, V. J. Business 62, 55−80 (1989). | Article |
23. Mantegna, R. N. Physica A179, 232−242 (1991).
24. Tucker, A. L. J. Business Econ. Statist. 10, 73−81 (1992).
25. Lévy, P. Théorie de I'Addition des Variables Aléatoires (Gauthier-Villars, Paris, 1937).
26. Brock, W. A. & Kleidon, A. W. J. Econ. Dyn. Contr. 16, 451−489 (1990).
27. Mantegna, R. N. & Stanley, H. E. Phys. Rev. Lett. 73, 2946−2949 (1994). | Article | PubMed | ISI | ChemPort |
28. Shlesinger, M. F. Phys. Rev. Lett. 74, 4959 (1995). | Article | PubMed | ChemPort |
29. Feller, W. An Introduction to Probability Theory and Its Applications (Wiley, New York, 1971).
30. Akgiray, V. & Booth, G. G. J. Business Econ. Statist. 6, 51−57 (1988).



© 2002 Nature Publishing Group
Privacy Policy