Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures

Abstract

SEVERAL techniques have been developed recently for fabricating nanocomposite structures by filling1–3 carbon nanotubes4,5. Here we show that surface-tension effects can induce the growth of uniform, thin metal oxide filmsá€"sometimes only a monolayer thická€"on the outside of nanotubes, along with oxide fillings in the internal cavities and thin oxide layers between the concentric shells of the tubes. We report the preparation of such nanotube–oxide composites by annealing a mixture of partially oxidized nanotubes and V2O5 powder in air above the melting point of the oxide. The external coatings of the tubes are crystalline sheets of the V2O5 layer-like structure, which grow with the c axis parallel to that of the nanotube layers. Intercalation of the oxide occurs where there are missing shells in the nanotubes. We also show that the nanotubes can be partially removed by oxidation, leaving behind layered oxide fibres. Given the importance of vanadium oxides as catalysts and functional ceramics, this role of nanotubes as removable templates might lead to useful new kinds of nanostructured materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ajayan, P. M. & Iijima, S. Nature 361, 333–334 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Tsang, S. C., Chen, Y. K., Harris, P. J. F. & Green, M. L. H. Nature 372, 159–162 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Guerret-Plécourt, C., Le Bouar, Y., Loiseau, A. & Pascard, H. Nature 372, 761–765 (1994).

    Article  ADS  Google Scholar 

  4. Iijima, S. Nature 354, 56–58 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Ebbesen, T. W. & Ajayan, P. M. Nature 358, 220–222 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Ajayan, P. M. et al. Nature 362, 522–525 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Prasad, R. & Lele, S. Phil. Mag. Lett. 70, 357–361 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Dujardin, E., Ebbesen, T. W., Hiura, H. & Tanigaki, K. Science 265, 1850–1852 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Ikemiya, N., Umemoto, J., Hara, S. & Ogino, K. ISU Int. 33, 156–165 (1993).

    Article  CAS  Google Scholar 

  10. Amelinckx, S. et al. Science 267, 1334–1338 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Galy, J. J. Solid St. Chem. 100, 229–245 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Cava, R. J. et al. J. Solid St. Chem. 65, 63–71 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Oshio, T., Sakai, Y. & Ehara, S. J. Vac. Sci. Technol. B12, 2055–2059 (1994).

    Article  Google Scholar 

  14. Smith, R. L., Lu, W. & Rohrer, S. Surf. Sci. 322, 293–300 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Cullen, S. L., Boothroyd, C. B. & Humphreys, C. J. Ultramicroscopy 56, 127–134 (1994).

    Article  CAS  Google Scholar 

  16. Ajayan, P. M. et al. Phys. Rev. Lett. 72, 1722–1725 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Lin, X. W. et al. Phys. Rev. B47, 3477–3481 (1993).

    Article  CAS  Google Scholar 

  18. Smith, D. J., McCartney, M. R. & Bursill, L. A. Ultramicroscopy 23, 299–304 (1987).

    Article  CAS  Google Scholar 

  19. Fan, H. J. & Marks, L. D. Ultramicroscopy 31, 357–364 (1989).

    Article  CAS  Google Scholar 

  20. Zasadzinski, J. A. et al. Science 263, 1726–1733 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Ohuchi, F. S., Parkinson, B. A., Ueno, K. & Koma, A. J. appl. Phys. 68, 2168–2175 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Gai, P. L. & Kourtakis, K. Science 267, 661–664 (1994).

    Article  ADS  Google Scholar 

  23. Dresselhaus, M. S. et al. Graphite Fibers and Filaments (ed. Cardona, M.) 238–243 (Springer, Berlin, 1988).

    Book  Google Scholar 

  24. Krylov, O. V. Catalysis by Nonmetals (ed. Loebel, E. M.) (Academic, New York, 1970).

    Google Scholar 

  25. Scarminio, J. et al. Electrochim. Acta 38, 1637–1642 (1993).

    Article  CAS  Google Scholar 

  26. Kim, D. H. & Kwok, H. S. Appl. Phys. Lett. 65, 3189–3191 (1994).

    ADS  Google Scholar 

  27. Shimizu, Y., Nagase, K., Miura, N. & Yamazoe, N. Jap. J. appl. Phys. 29, L1708–L1711 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajayan, P., Stephan, O., Redlich, P. et al. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature 375, 564–567 (1995). https://doi.org/10.1038/375564a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375564a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing