Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Sunday 24 September 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 375, 313 - 316 (25 May 1995); doi:10.1038/375313a0

Hybrid speciation accompanied by genomic reorganization in wild sunflowers

Loren H. Rieseberg, Chrystal Van Fossen & Andrée M. Desrochers

Department of Biology, Indiana University, Bloomington, Indiana 47405, USA

THE origin of a new diploid species via hybridization is theoretically difficult because it requires the development of reproductive isolation in sympatry. In the absence of isolation, the hybrid genotype will be overcome by gene flow with its parents. According to genetic models1-3, reproductive isolation can be facilitated by rapid karyotypic evolution in the recombinant hybrid. Here we use comparative linkage mapping4-5 to demonstrate extensive genomic reorganization in the hybrid species Helianthm anomalus, relative to its parents H. annuus and H. petiolaris. The unprecedented detail provided by the linkage maps indicates that rapid karyotypic evolution in H. anomalus results from the merger of pre-existing structural differences between the parents, as well as chromosomal rearrangements apparently induced by recombination. Moreover, determination of the parental origin of mapped loci in H. anomalus suggests that parental genomic structure has influenced hybrid genomic composition by protecting several large linkage blocks from recombination during speciation. These mapping data, when combined with previous meiotic analyses6 and evidence of semisterility between the hybrid and its parents6,7, satisfy genetic models for speciation through hybrid recombination.

------------------

References

1. Stebbins, G. L. Cytologia (Suppl. Vol.). 336−340 (1957).
2. Grant, V. Cold Spring Harb. Symp. quant. Biol. 23, 337−363 (1958). | PubMed | ISI | ChemPort |
3. Templeton, A. R. A. Rev. Ecol. Syst. 12, 23−48 (1981). | Article | ISI |
4. Bonierbale, M. W., Plaisted, R. L. & Tanksley, S. D. Genetics 120, 1095−1103 (1988). | ISI |
5. Tanksley, S. D., Bernatsky, R., Lapitan, N. L. & Prince, J. P. Proc. natn. Acad. Sci., U.S.A. 85, 6419−6423 (1988). | ChemPort |
6. Chandler, J. M., Jan, C. & Beard, B. H. Syst. Bot. 11, 353−371 (1986).
7. Heiser, C. B. Rhodora 60, 271−283 (1958).
8. Heiser, C. B., Smith, D. M., Clevenger, S. & Martin, W. C. Mem. Torrey bot. Club 22, 1−218 (1969).
9. Rieseberg, L. H., Beckstrom, S., Liston, A. & Arias, D. Syst. Bot. 16, 50−76 (1991).
10. Rieseberg, L. H. Am. J. Bot. 78, 1218−1237 (1991).
11. Heiser, C. B. Evolution 1, 249−262 (1947).
12. Nabhan, G. P. & Reichhardt, K. L. SW. Nat. 28, 231−235 (1983).
13. Crawford, D. J. Plant Molecular Systematics (Wiley, New York, 1990).
14. Williams, J. K. G., Kubelic, A. R., Livak, K. J., Rafalski, J. A. & Tingey, S. V. Nucleic Acids Res. 18, 6531−6535 (1990). | PubMed | ISI | ChemPort |
15. Rieseberg, L. H., Choi, H. C., Chan, R. & Spore, C. Heredity 70, 285−293 (1993). | ChemPort |
16. Lander, E. S. et al. Genomics 1, 174−181 (1987). | Article | PubMed | ChemPort |
17. Holm, D. G., Fitz-Earle, M. & Sharp, C. B. Theor. appl. Genet. 57, 247−256 (1980).
18. Coyne, J. A. Evolution 28, 505−506 (1974).
19. Rieseberg, L. H., Carter, R. & Zona, S. Evolution 44, 1498−1511 (1990). | ChemPort |
20. Goodfellow, P. N. Curr. Biol. 3, 149−151 (1993). | Article | PubMed | ChemPort |
21. Fritsch, P. & Rieseberg, L. H. Nature 359, 633−636 (1992). | Article |



© 1995 Nature Publishing Group
Privacy Policy