Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Wednesday 26 July 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 375, 303 - 305 (25 May 1995); doi:10.1038/375303a0

Synthetic molecules that fold into a pleated secondary structure in solution

R. Scott Lokey & Brent L. Iverson*

Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA
* To whom correspondence should be addressed.

THE construction of synthetic molecules that fold or assemble predictably into large, well defined structures represents a fertile area of chemistry. Many supramolecular systems have been reported that self-assemble as a result of non-covalent interactions1-7; and the control of higher-order protein structure by de novo design has also been demonstrated8,9. Protein secondary structural motifs have also been stabilized by incorporating artificial groups that impose constraints on the folded architecture10-12. Here we describe the synthesis of molecules that will fold in water into a pleated structure, as a result of interactions between alternating electron-rich donor groups and electron-deficient acceptor groups. We verify the pleated structure using absorption and NMR spec-troscopy. Donor-acceptor interactions have been used previously to engineer specific supramolecular geometries2,13, and are energetically favourable in organic as well as in aqueous solutions. But whereas previously such interactions have been used to effect self-assembly of distinct molecules, our results show that they can also determine the secondary structure of complex synthetic molecules in solution.

------------------

References

1. Lindsey, J. S. New J. Chem. 15, 153−180 (1991). | ISI | ChemPort |
2. Amabilino, D. B. et al. J. Am. chem. Soc. 117, 1271−1294 (1995). | Article | ChemPort |
3. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Science 254, 1312−1319 (1991). | PubMed | ISI | ChemPort |
4. Lehn, J.-M. Angew. Chem. int. Edn engl. 29, 1304−1319 (1990).
5. Chambron, J. C., Dietrich-Buchecker, C. O., Heitz, V., Nierengarten, J.-F. & Sauvage, J.-P. in Transition Metals in Supramolecular Chemistry (eds Fabbrizzi, L. & Poggi, A.) 371−390 (Kluwer Academic, Dordrecht, 1994). | ChemPort |
6. Ashton, P. R., Philp, D., Spencer, J. & Stoddart, J. F. J. chem. Soc., chem. Commun. 1677−1679 (1991). | Article | ChemPort |
7. LaBrenz, S. R. & Kelly, J. W. J. Am. chem. Soc. 117, 1655−1656 (1995). | Article | ChemPort |
8. Betz, S. F., Raleigh, D. P. & Degrado, W. F. Curr. Opin. struct. Biol. 3, 601−610 (1993). | Article | ISI | ChemPort |
9. Quinn, T. P., Tweedy, N. B., Richardson, J. S., Williams, R. W. & Richardson, D. C. Proc. natn. Acad. Sci. U.S.A. 91, 8747−8751 (1994). | ChemPort |
10. Mutter, M. et al. J. Am. chem. Soc. 114, 1463−1470 (1992). | Article | ChemPort |
11. Ghadiri, M. R., Soares, C. & Choi, C. J. Am. chem. Soc. 114, 825−831 (1992). | Article | ChemPort |
12. Åkerfeldt, K. S., Kim, R. M., Comac, D., Groves, J. T., Lear, J. D. & DeGrado, W. F. J. Am. chem. Soc. 114, 9656−9657 (1992).
13. Hunter, C. A. & Sanders, J. R. M. J. Am. chem. Soc. 112, 5525−5534 (1990). | Article | ISI | ChemPort |
14. Hanna, M. W. & Ashbaugh, A. L. J. phys. Chem. 68, 811−816 (1964). | ChemPort |
15. Deranleau, D. A. J. Am. chem. Soc. 91, 4044−4054 (1969). | Article | ChemPort |
16. Benniston, A. C., Harriman, A. & Lynch, V. M. Tetrahedron Lett. 35, 1473−1476 (1994). | Article | ChemPort |
17. Cantor, R. C. & Schimmel, P. R. Biophysical Chemistry Part II 390−408 (Freeman, New York, 1980).
18. Chudek, J. A., Foster, R. & Twiselton, D. R. J. chem. Soc. Perkin Trans. II 1385−1389 (1983). | Article | ChemPort |
19. Barlos, K. et al. Tetrahedron Lett. 30, 3943−3946 (1989). | Article | ISI | ChemPort |
20. Atherton, E. & Shepard, R. C. Solid Phase Peptide Synthesis (IRL, Oxford, 1989).



© 1995 Nature Publishing Group
Privacy Policy