Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prospects for detection of extra-solar giant planets by next-generation telescopes

Abstract

THE construction of several large ground-based telescopes1,2 and the anticipated launches of new space-based ones3-5, have prompted renewed interest in the means by which extra-solar planets might be discovered1,6,7-11. The direct detection of light from such a planet would be the most compelling means of discovery, and it may soon be technically feasible1,6. Jupiter has traditionally been used as a benchmark for observability, but extra-solar giant planets could have a wide range of masses and ages12, and could be significantly brighter than Jupiter. Here we present calculations estimating the optical and infrared fluxes of extra-solar giant planets with a range of ages, and demonstrate the conditions under which they will be observable with several new telescopes. Giant planets with masses greater than that of Jupiter, and younger than about 1 billion years, are the best targets, and they should be visible using the generation of telescopes now under construction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Angel, R. Nature 368, 203–207 (1994).

    Article  ADS  Google Scholar 

  2. Mountain, M., Kurz, R. & Oschmann, J. Proc. SPIE 2199, 41–55 (1994).

    Article  ADS  Google Scholar 

  3. Thompson, R. Space Sci. Rev. 61, 69–93 (1992).

    Article  ADS  Google Scholar 

  4. Erickson, E. F. & Werner, M. W. Space Sci. Rev. 61, 95–98 (1992).

    Article  ADS  Google Scholar 

  5. Benvenuti, P. et al. in ESA's Report to the 30th COSPAR Meeting, ESA SP-1169 (ed. Burke, W. R.) 78–81 (ISO, Paris, 1994).

    Google Scholar 

  6. Burke, B. F. et al. TOPS: Toward Other Planetary Systems (NASA Solar System Exploration Division, Washington DC, 1992).

    Google Scholar 

  7. Gatewood, G. D. Astr. J. 94, 213–224 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Reasenberg, R. D. et al. Astr. J. 96, 1731–1745 (1988).

    Article  ADS  Google Scholar 

  9. Walker, G. A. H. et al. Icarus (in the press).

  10. Mao, S. & Paczynski, B. Astrophys. J. 374, L37–L40 (1991).

    Article  ADS  Google Scholar 

  11. Borucki, W. J. & Summers, A. L. Icarus 58, 121–134 (1984).

    Article  ADS  Google Scholar 

  12. Podolak, M., Hubbard, W. B. & Pollack, J. B. in Protostars and Planets III (eds Levy, E. & Lunine, J. I.) 1109 (Univ. Arizona Press, Tucson, 1993).

    Google Scholar 

  13. Burrows, A., Hubbard, W. B. & Lunine, J. I. Astrophys. J. 345, 939–958 (1989).

    Article  ADS  Google Scholar 

  14. Burrows, A., Hubbard, W. B., Saumon, D. & Lunine, J. I. Astrophys. J. 406, 158–171 (1993).

    Article  ADS  Google Scholar 

  15. Graboske, H. C., Pollack, J. B., Grossman, A. S. & Olness, R. J. Astrophys. J. 199, 265–281 (1975).

    Article  ADS  Google Scholar 

  16. Hubbard, W. B. Icarus 30, 305–310 (1977).

    Article  ADS  Google Scholar 

  17. Saumon, D. & Chabrier, G. Phys. Rev. A44, 5122–5141 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Saumon, D. & Chabrier, G. Phys. Rev. A46, 2084–2100 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Pollack, J. B. A. Rev. Astr. Astrophys. 22, 389–424 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Bodenheimer, P. & Pollack, J. B. Icarus 67, 391–408 (1986).

    Article  ADS  Google Scholar 

  21. Boss, A. P. Science 267, 360–362 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Conrath, R. A., Hanel, R. A. & Samuelson, R. E. in Origin and Evolution of Planetary and Satellite Atmospheres (eds Atreya, S. K., Pollack, J. B. & Matthews, M. S.) 513–538 (Univ. Arizona Press, Tucson, 1989).

    Google Scholar 

  23. Saumon, D., Hubbard, W. H., Chabrier, G. & Lunine, J. I. Astrophys. J. 391, 827–831 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Guillot, T., Chabrier, G., Gautier, D. & Morel, P. Astrophys. J. (in the press).

  25. Black, D. C. Icarus 43, 293–301 (1980).

    Article  ADS  Google Scholar 

  26. Pearl, J. C. & Conrath, R. A. J. geophys. Res. Suppl. 96, 18921–18930 (1991).

    Article  ADS  Google Scholar 

  27. Erickson, E. F. Space Sci. Rev. 61, 61–68 (1992).

    Article  ADS  Google Scholar 

  28. Zuckermann, B., Forveille, T. & Kastner, J. H. Nature 373, 494–496 (1995).

    Article  ADS  Google Scholar 

  29. Lin, D. N. C. & Papaloizou, J. Mon. Not. R. astr. Soc. 186, 799–812 (1979).

    Article  ADS  Google Scholar 

  30. Wetherill, G. W. Lunar Planet. Sci. Conf. XXIV, 1511–1512 (1993).

    ADS  Google Scholar 

  31. Dreiling, L. A. & Bell, R. A. Astrophys. J. 241, 736–758 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burrows, A., Saumon, D., Guillot, T. et al. Prospects for detection of extra-solar giant planets by next-generation telescopes. Nature 375, 299–301 (1995). https://doi.org/10.1038/375299a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375299a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing