Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Palaeoaltimetry from energy conservation principles

Abstract

A KNOWLEDGE of past changes in the mean elevations of large continental areas is important for understanding both dynamic processes in the Earth's mantle1 and the evolution of the global climate2. But virtually all methods for determining palaeoelevations are problematic3, in part because changes in either elevation or climate can give rise to the same observed geological phenomena4. Ideally, palaeoelevations would be inferred directly from estimates of palaeopressure, and it has recently been shown5 that vesicles in basaltic lava flows preserve a record of atmospheric pressure at the altitude of emplacement; however, the elevations thus obtained have large errors (1.4 km), and the method can at present be applied only to lavas that have had a simple emplacement history5. Palaeobotanical methods for estimating palaeoelevation have received much attention6–12, but they rely on empirical temperature–elevation relationships, the uncertainties in which are difficult to evaluate for past climates. Here we describe an alternative palaeobotanical approach, based on energy conservation in the atmosphere, in which fossil leaf assemblages are used to infer enthalpy, rather than temperature. This approach is relatively insensitive to palaeoclimate, with an expected error in palaeoeleva-tion of 700 m.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. England, P. & Houseman, G. J. geophys. Res. 94, 17561–17579 (1989).

    Article  ADS  Google Scholar 

  2. Raymo, M. E. & Ruddiman, W. F. Nature 359, 117–122 (1992).

    Article  ADS  CAS  Google Scholar 

  3. England, P. & Molnar, P. Geology 18, 1173–1177 (1990).

    Article  ADS  Google Scholar 

  4. Molnar, P. & England, P. Nature 346, 29–34 (1990).

    Article  ADS  Google Scholar 

  5. Sahagian, D. L. & Maus, J. E. Nature 372, 449–451 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Axelrod, D. I. Paleobotanist 14, 144–171 (1966).

    Google Scholar 

  7. Wolfe, J. A. Bull. U.S. geol. Surv. 2040, (1993).

  8. Meyer, H. W. thesis, Univ. California at Berkeley (1986).

  9. Wolfe, J. A. Bull. U.S. geol. Surv. 1964 (1992).

  10. Meyer, H. W. Palaeogeogr. Palaeoclimatol. Palaeoecol. 99, 71–99 (1992).

    Article  Google Scholar 

  11. Gregory, K. M. Paleoclimates (in the press).

  12. Gregory, K. M. & Chase, C. G. Geology 20, 581–585 (1992).

    Article  ADS  Google Scholar 

  13. Bailey, I. W. & Sinnot, E. W. Science 41, 831–834 (1915).

    Article  ADS  CAS  Google Scholar 

  14. Bailey, I. W. & Sinnot, E. W. Am. J. Bot. 3, 24–39 (1916).

    Article  Google Scholar 

  15. Wolfe, J. A. & Hopkins, H. E. in Tertiary Correlation and Climatic Changes in the Pacific (ed. Hatai, K.) 67–76 (Sasaki, Sendai, 1967).

    Google Scholar 

  16. Wolfe, J. A. Palaeogeogr. Palaeoclimatol. Palaeoecol. 9, 27–57 (1971).

    Article  Google Scholar 

  17. Wolfe, J. A. Prof. pap. U.S. geol. Surv. 1106 (1979).

  18. Wallace, J. M. & Hobbs, P. V. Atmospheric Science: An Introductory Survey (Academic, New York, 1977).

    Google Scholar 

  19. Emanuel, K. A. Atmospheric Convection (Oxford Univ. Press, New York, 1994).

    Google Scholar 

  20. Betts, A. K. J. atmos. Sci. 39, 1484–1505 (1982).

    Article  ADS  Google Scholar 

  21. Xu, K.-M. & Emanuel, K. A. Mon. Weath. Rev. 117, 1471–1479 (1989).

    Article  ADS  Google Scholar 

  22. International Station Meteorological Climate Summary CD-ROM Version 1.0 (Federal Climate Complex, Asheville, NC, 1990).

  23. Mardia, K. V., Kent, J. T. & Bibby, J. M. Multivariate Analysis (Academic, New York, 1979).

    MATH  Google Scholar 

  24. Haq, B. U., Hardenbol, J. & Vail, P. R. Science 235, 1156–1167 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forest, C., Molnar, P. & Emanuel, K. Palaeoaltimetry from energy conservation principles. Nature 374, 347–350 (1995). https://doi.org/10.1038/374347a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374347a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing