Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pathway of processive ATP hydrolysis by kinesin

Abstract

Direct measurement of the kinetics of kinesin dissociation from microtubules, the release of phosphate and ADP from kinesin, and rebinding of kinesin to the microtubule have defined the mechanism for the kinesin ATPase cycle. The processivity of ATP hydrolysis is ten molecules per site at low salt concentration but is reduced to one ATP per site at higher salt concentration. Kinesin dissociates from the microtubule after ATP hydrolysis. This step is rate-limiting. The subsequent rebinding of kinesin - ADP to the microtubule is fast, so kinesin spends only a small fraction of its duty cycle in the dissociated state. These results provide an explanation for the motility differences between skeletal myosin and kinesin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vale, R. D., Reese, T. S. & Sheetz, M. P. Cell 42, 39–50 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brady, S. T. Nature 317, 73–75 (1985).

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Scholey, J. M., Porter, M. E., Grissom, P. M. & McIntosh, J. R. Nature 318, 483–486 (1985).

    Article  CAS  ADS  PubMed  Google Scholar 

  4. Taylor, E. W. The Heart and Cardiovascular System 2nd edn 1281–1293 (Raven, New York, 1992).

    Google Scholar 

  5. Johnson, K. A. A. Rev. Biophys. biophys. Chem. 14, 161–188 (1985).

    Article  CAS  Google Scholar 

  6. Howard, J., Hudspeth, A. J. & Vale, R. D. Nature 342, 154–158 (1989).

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Uyeda, R. Q. P., Warrick, H. M., Kron, S. J. & Spudich, J. A. Nature 352, 307–311 (1991).

    Article  CAS  ADS  PubMed  Google Scholar 

  8. Greene, L. E. & Eisenberg, E. J. biol. Chem. 255, 543–548 (1980).

    CAS  PubMed  Google Scholar 

  9. Gilbert, S. P. & Johnson, K. A. Biochemistry 32, 4677–4684 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Harrison, B. C. et al. Nature 362, 73–75 (1993).

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Gilbert, S. P. & Johnson, K. A. Biochemistry 33, 1951–1960 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Holzbaur, E. L. F. & Johnson, K. A. Biochemistry 28, 7010–7016 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Hackney, D. D. Proc. natn. Acad. Sci. U.S.A. 85, 6314–6318 (1988).

    Article  CAS  ADS  Google Scholar 

  14. Sadhu, A. & Taylor, E. W. J. biol. Chem. 267, 11352–11359 (1992).

    CAS  PubMed  Google Scholar 

  15. Brune, M., Hunter, J. L., Corrie, J. E. T. & Webb, M. R. Biochemistry 33, 8262–8271 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Woodward, S. K. A., Eccleston, J. F. & Geeves, M. A. Biochemistry 30, 422–430 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Block, S. M., Goldstein, L. S. B. & Schnapp, B. J. Nature 348, 348–352 (1990).

    Article  CAS  ADS  PubMed  Google Scholar 

  18. Romberg, L. & Vale, R. D. Nature 361, 168–170 (1993).

    Article  CAS  ADS  PubMed  Google Scholar 

  19. Stewart, R. J., Thaler, J. P. & Goldstein, L. S. B. Proc. natn. Acad. Sci. U.S.A. 90, 5209–5213 (1993).

    Article  CAS  ADS  Google Scholar 

  20. Hackney, D. D. Proc. natn. Acad. Sci. U.S.A. 91, 6865–6869 (1994).

    Article  CAS  ADS  Google Scholar 

  21. Lasek, R. J. & Brady, S. T. Nature 316, 645–647 (1985).

    Article  CAS  ADS  PubMed  Google Scholar 

  22. Barshop, B. A., Wrenn, R. F. & Frieden, C. Analyt. Biochem. 130, 134–145 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. Hiratsuka, T. Biochim. biophys. Acta 742, 496–508 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. Lanzetta, P. A., Alvarez, L. J., Reinach, P. S. & Candia, O. A. Analyt. Biochem. 100, 95–97 (1979).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, S., Webb, M., Brune, M. et al. Pathway of processive ATP hydrolysis by kinesin. Nature 373, 671–676 (1995). https://doi.org/10.1038/373671a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373671a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing