Nature Publishing Group, publisher of Nature, and other science journals and reference works
my account e-alerts subscribe register
Tuesday 26 September 2017
Journal Home
Current Issue
Download PDF
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 373, 595 - 598 (16 February 1995); doi:10.1038/373595a0

Phase-contrast imaging of weakly absorbing materials using hard X-rays

T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson & S. W. Wilkins

CSIRO Division of Materials Science and Technology, Private Bag 33, Rosebank MDC, Clayton, Victoria 3169, Australia

IMAGING with hard X-rays is an important diagnostic tool in medicine, biology and materials science. Contact radiography and tomography using hard X-rays provide information on internal structures that cannot be obtained using other non-destructive methods. The image contrast results from variations in the X-ray absorption arising from density differences and variations in composition and thickness of the object. But although X-rays penetrate deeply into carbon-based compounds, such as soft biological tissue, polymers and carbon-fibre composites, there is little absorption and therefore poor image contrast. Here we describe a method for enhancing the contrast in hard X-ray images of weakly absorbing materials by resolving phase variations across the X-ray beam1–4. The phase gradients are detected using diffraction from perfect silicon crystals. The diffraction properties of the crystal determine the ultimate spatial resolution in the image; we can readily obtain a resolution of a fraction of a millimetre. Our method shows dramatic contrast enhancement for weakly absorbing biological and inorganic materials, compared with conventional radiography using the same X-ray energy. We present both bright-field and dark-field phase-contrast images, and show evidence of contrast reversal. The method should have the clinical advantage of good contrast for low absorbed X-ray dose.



1. Somenkov, V. A., Tkalich, A. K. & Shil'shtein, S. Sh. Sov. Phys. Tech. Phys. 36, 1309−1311 (1991).
2. Mitrofanov, N. et al. Soviet Patent No. 1402871 (1986).
3. Belyaevskaya, E. A., Epfanov, V. P. & Ingal, V. Soviet Patent No. 4934958 (1991); US Patent No. 5319694 (1992).
4. Wilkins, S. W., Australian Patent Applic. PM0583/93 (1993) & PCT/AU94/00480 (1994).
5. Zernike, F. Z. Tech. Phys. 16, 454−457 (1935).
6. Steel, W. H. Interferometory 2nd edn (Cambridge Univ. Press, 1983).
7. Born, M. & Wolf, E. Principles of Optics 2nd edn (Pergamon, Oxford, 1964).
8. Hart, M. Rep. Prog. Phys. 34, 435−490 (1971). | Article | ISI | ChemPort |
9. Tanner, B. K. & Bowen, D. K. J. Cryst. Growth 126, 1−18 (1993). | Article | ChemPort |
10. Nakayama, K., Hashizume, H., Miyoshi, A., Kikuta, S. & Kohra, K. Z. Naturf. 28A, 632−638 (1973).
11. Matsushita, T. & Hashizume, H. in Handbook on Synchrotron Radiation Vol. 1 (ed. Koch, E. E.) Ch. 4 (North-Holland, Amsterdam, 1983).
12. Wilkins, S. W. Proc. R. Soc. 364, 569−589 (1978). | ChemPort |
13. Azároff, L. V. et al. X-Ray Diffraction 180−191 (McGraw-Hill, Sydney, 1974).
14. Davis, T. J. Acta Cryst. A50, 686−690 (1994).
15. Authier, A. & Simon, D. Acta Cryst. A24, 517−526 (1968).
16. Uragami, T. J. phys. Soc. Japan 27, 147−154 (1969). | ChemPort |
17. Afanas'ev, A. M. & Kohn, V. G. Acta Cryst. A27, 421−430 (1971).
18. Bonse, U. & Hart, M. Appl. Phys. Lett. 6, 155−156 (1965). | Article | ISI |
19. Wilkins, S. W. Australian Patent Applic. PM1519/93 (1993) & PCT/AU94/00480 (1994).

© 1995 Nature Publishing Group
Privacy Policy