Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Basalt vesicularity as a measure of atmospheric pressure and palaeoelevation

Abstract

THE pressure in, and thus the size of, a bubble in a lava flow is determined by the atmospheric pressure and the hydrostatic pressure of the overlying lava. If atmospheric sea-level pressure is known (or assumed), vesicle size distributions in basalt flows can thus be used as an indicator of the palaeoelevation of emplacement1. Here we show by analysis of the vesicle size distribution of basalt samples collected from the summit and base of Mauna Loa volcano in Hawaii that the technique provides estimates of ambient pressure that are accurate to within 0.1 bar, and thus estimates of elevation with a resolution of about 1,400m. This palaeoaltimetric technique should find useful application in palaeogeographical reconstruction2 for times when sea-level pressure was similar to the present value. (Conversely, if the elevation of emplacement is known, our technique should be able to provide a measure of sea-level palaeopressure.) Unlike palaeo-botanical methods for estimating elevations3–6, this method does not have to assume a relationship between temperature and altitude; on the other hand, its use is restricted to lava flows that have had a simple emplacement history.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sahagian, D. L., Anderson, A. T. & Ward, B. Bull. volcan. 52, 49–56 (1989).

    Article  ADS  Google Scholar 

  2. Gregory, K. & Chase, C. Geology 20, 581–585 (1992).

    Article  ADS  Google Scholar 

  3. Meyer, H. W. Palaeogeogr. Palaeoclimatol. Palaeoecol. 99, 71–99 (1992).

    Article  Google Scholar 

  4. Wolfe, J. & Shorn, H. Paleoblology 15, 180–198 (1989).

    Article  Google Scholar 

  5. Wolfe, J. Bull. U.S. Geol. Surv. 1964, 1–35 (1992).

    Google Scholar 

  6. Ziegler, A. M. et al. A. Rev. Earth planet. Sci. 13, 385–425 (1985).

    Article  ADS  Google Scholar 

  7. Hon, K., Kauahikaua, J., Denlinger, R. & Mackay, K. Bull. geol. Soc. Am. 106, 351–370 (1994).

    Article  Google Scholar 

  8. Mangan, M. T., Cashman, K. V. & Newman, S. Geology 21, 157–160 (1993).

    Article  ADS  Google Scholar 

  9. Cashman, K., Mangan, M. & Newman, S. (abstr.) EOS 73, 629 (1992).

    Google Scholar 

  10. Pingatore, N. et al. (abstr.) EOS 74, 626 (1993).

    Google Scholar 

  11. Sahagian, D. L. J. geophys. Res. 92, 4895–4904 (1987).

    Article  ADS  Google Scholar 

  12. Sahagian, D. L. Tectonics 7, 125–138 (1988).

    Article  ADS  Google Scholar 

  13. Turner, S. et al. Nature 364, 50–54 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Lipman, P. W. & Mehnert, H. H. Mem. geol. Soc. Am. 144, 119–154 (1975).

    CAS  Google Scholar 

  15. Beghoul, N., Barazangi, M. & Isacks, B. J. geophys. Res. 98, 1997–2016 (1993).

    Article  ADS  Google Scholar 

  16. Molnar, P. & England, P. Nature 346, 29–34 (1990).

    Article  ADS  Google Scholar 

  17. Barron, E. J. & Washington, W. M. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. et al.) 546–553 (Am. Geophysical Union, Washington DC, 1985).

    Google Scholar 

  18. Abe, Y. & Matsui, T. J. geophys. Res. 91, E291–E302 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Hansen, J. et al. Science 213, 957–966 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Sundquist, E. T. & Broecker, W. S. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present 1–627 (Am. Geophysical Union, Washington DC, 1985).

    Book  Google Scholar 

  21. Sahagian, D. L. J. Geol. 93, 205–211 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahagian, D., Maus, J. Basalt vesicularity as a measure of atmospheric pressure and palaeoelevation. Nature 372, 449–451 (1994). https://doi.org/10.1038/372449a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372449a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing