Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High abundance of Archaea in Antarctic marine picoplankton

Abstract

ARCHAEA (archaebacteria) constitute one of the three major evolu-tionary lineages of life on Earth1–3. Previously these prokaryotes were thought to predominate in only a few unusual and disparate niches, characterized by hypersaline, extremely hot, or strictly anoxic conditions4–7. Recently, novel (uncultivated) phylotypes of Archaea have been detected in coastal8 and subsurface9,10 marine waters, but their abundance, distribution, physiology and ecology remain largely undescribed. Here we report exceptionally high archaeal abundance in frigid marine surface waters of Antarctica. Pelagic Archaea constituted up to 34% of the prokaryotic biomass in coastal Antarctic surface waters, and they were also abundant in a variety of other cold, pelagic marine environments. Because they can make up a significant fraction of picoplankton biomass in the vast habitats encompassed by cold and deep marine waters, these pelagic Archaea represent an unexpectedly abundant component of the Earth's biota.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Woese, C. R. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Woese, C. R., Kandler, O. & Wheelis, M. L. Proc. natn. Acad. Sci. U.S.A. 87, 4576–4579 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Olsen, G. J. & Woese, C. R. FASEB J. 7, 113–123 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Whitman, W. B., Bowen, T. L. & Boone, D. R. in The Prokaryotes (eds Balows, A., Truper, H. G., Dworkin, M., Harder, W. & Schleifer, K. H.) 719–767 (Springer, New York, Berlin, Heidelberg, 1992).

    Google Scholar 

  5. Jones, W. J., Nagle, D. P. & Whitman, W. B. Microbiol. Rev. 51, 135–177 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Stetter, K. O., Fiala, G., Huber, R. & Segerer, A. FEMS Microbiol. Rev. 75, 117–124 (1990).

    Article  Google Scholar 

  7. Tindall, B. J. in The Prokaryotes (eds Balows, A., Truper, H. G., Dworkin, M., Harder, W. & Schleifer, K. H.) 768–808 (Springer, New York, Berlin, Heidelberg, 1992).

    Google Scholar 

  8. DeLong, E. F. Proc. natn. Acad. Sci. U.S.A. 89, 5585–5689 (1992).

    Article  Google Scholar 

  9. Fuhrman, J. A., McCallum, K. & Davis, A. A. Nature 356, 148–149 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Fuhrman, J. A., McCallum, K. & Davis, A. A. Appl. envir. Microbiol. 59, 1294–1302 (1993).

    CAS  Google Scholar 

  11. Olsen, G. J., Lane, D. J., Giovannoni, S. J., Pace N. R. & Stahl, D. A. A. Rev. Microbiol. 40, 337–365 (1986).

    Article  CAS  Google Scholar 

  12. Stahl, D. A., Flesher, B., Mansfield, H. R. & Montgomery, L. Appl. envir. Microbiol. 54, 1079–1084 (1988).

    CAS  Google Scholar 

  13. Giovannoni, S. J. Britschgi, T. B., Moyer, C. L. & Field, K. G. Nature 345, 60–63 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Stahl, D. A. & Amman, R. in Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. & Goodfellow, M.) 205–248 (Wiley, New York, 1991).

    Google Scholar 

  15. Raskin, L., Stromley, J. M., Rittmann, B. E. & Stahl, D. A. Appl. envir.Microbiol. 60, 1232–1240 (1994).

    CAS  Google Scholar 

  16. Sakai, R. K. et al. Science 230, 487–494 (1988).

    Article  ADS  Google Scholar 

  17. Medlin, L., Ellwood, H. J., Stickel, S. & Sogin, M. L. Gene 71, 491–499 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Felsenstein, J. J. molec. Evol. 17, 368–376 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Woese, C. R. Microbiol. Rev. 58, 1–9 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Huber, R., Stoffers, P., Cheminee, J. L., Richnow, H. H. & Stetter, K. O. Nature 345, 179–182 (1990).

    Article  ADS  Google Scholar 

  21. Stetter, K. O. et al. Nature 365, 743–745 (1994).

    Article  ADS  Google Scholar 

  22. Barns, S. M., Fundyga, R. E., Jeffries, M. W. & Pace, N. R. Proc. natn. Acad. Sci. U.S.A. 90, 1609–1613 (1994).

    Article  ADS  Google Scholar 

  23. Larsen, N. et al. Nucleic Acids Res. 21, 2021–2023 (1993).

    Article  Google Scholar 

  24. Olsen, G. J., Matsuda, H., Hagstrom, R. & Overbeek, R. Comp. appl. Biosci. 10, 41–48 (1994).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeLong, E., Wu, K., Prézelin, B. et al. High abundance of Archaea in Antarctic marine picoplankton. Nature 371, 695–697 (1994). https://doi.org/10.1038/371695a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371695a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing