Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An organic solid with wide channels based on hydrogen bonding between macrocycles

Abstract

RESEARCH on microporous solids has focused largely on inorganic materials such as aluminosilicates (zeolites), aluminophosphates, pillared clays and other layered materials1,2. An elusive goal has been the design of new materials with specific properties such as selective adsorption and catalytic activity. It would be very useful if the tools of molecular synthesis could be brought to bear on this problem. Here we report the design, based on a modular approach, and the crystal structure of an organic solid with large-diameter (about 9 Å) extended channels. The channels are formed from planar, rigid macrocyclic building blocks. Onto the outer rim of the macrocycles are attached phenolic groups, which form hexagonally closest-packed two-dimensional hydrogen-bonded networks. Extended channels result from the stacking of these layers in a way that maintains registry between the macrocyclic cavities, and these channels are filled with solvent molecules. This approach potentially offers a simple means to exercise control over pore size and shape in the solid state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ozin, G. A., Kuperman, A. & Stein, A. Angew. Chem. int. Edn engl. 28, 359–376 (1989).

    Article  Google Scholar 

  2. Rolinson, D. R. Chem. Rev. 90, 867–878 (1990).

    Article  Google Scholar 

  3. Zerkowski, J. A., MacDonald, J. C., Seto, C. T., Wierda, D. A. & Whitesides, G. M. J. Am. chem. Soc. 116, 2382–2391 (1994).

    Article  CAS  Google Scholar 

  4. Chang, Y. L., West, M. A., Fowler, F. W. & Lauher, J. W. J. Am. chem. Soc. 115, 5991–6000 (1993).

    Article  CAS  Google Scholar 

  5. Lehn, J.-M., Mascal, M., DeCian, A. & Fischer, J. J. chem. Soc., Perkin Trans. 2 461–467 (1992).

  6. Garcia-Tellado, F., Geib, S. J., Goswami, S. & Hamilton, A. D. J. Am. chem. Soc. 113, 9265–9269 (1991).

    Article  CAS  Google Scholar 

  7. Etter, M. C. & Adsmond, D. A. J. chem. Soc., chem. Commun. 589–591 (1990).

  8. Michaelides, A., Kiritsis, V., Skoulika, S. & Aubury, A. Angew. Chem. int. Edn engl. 32, 1495–1497 (1993).

    Article  Google Scholar 

  9. Simard, M., Su, D. & Wuest, J. D. J. Am. chem. Soc. 113, 4696–4698 (1991).

    Article  CAS  Google Scholar 

  10. Ermer, O. & Eling, A. Angew. Chem. int. Edn engl. 27, 829–833 (1988).

    Article  Google Scholar 

  11. Ermer, O. & Lindenberg, L. Helv. chim. Acta. 74, 825–877 (1991).

    Article  CAS  Google Scholar 

  12. Hoskins, B. F. & Robson, R. J. Am. chem. Soc. 112, 1546–1554 (1990).

    Article  CAS  Google Scholar 

  13. Duchamp, D. J. & Marsh, R. E. Acta Crystallogr. B25, 5–19 (1969).

    Article  CAS  Google Scholar 

  14. Abrahams, B. F., Hoskins, B. F., Michail, D. M. & Robson, R. Nature 369, 727–729 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Davies, J. E., Kemula, W., Powell, H. M. & Smith, N. O. J. incl. Phenom. 1, 3–44 (1983).

    Article  CAS  Google Scholar 

  16. Weber, E. Molecular Inclusion and Molecular Recognition-Clathrates I (ed. Weber, E.) 1 (Topics in Current Chemistry Vol. 140, Springer, Beriin, 1987).

    Google Scholar 

  17. Abbott, S. J. et al. J. chem. Soc., chem. Commun. 796–797 (1982).

  18. Weber, E., Pollex, R. & Czugler, M. J. org. Chem. 57, 4068–4070 (1992).

    Article  CAS  Google Scholar 

  19. Ghadiri, M. R., Granja, J. R., Milligan, R. A., Mcree, D. E. & Khazanovich, N. Nature 366, 324–327 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Zhang, J., Pesak, D. J., Ludwick, J. L. & Moore, J. S. J. Am. chem. Soc. 116, 4227–4239 (1994).

    Article  CAS  Google Scholar 

  21. Zhang, J. & Moore, J. S. J. Am. chem. Soc. 114, 9701–9702 (1992).

    Article  CAS  Google Scholar 

  22. Zhang, J. & Moore, J. S. J. Am. chem. Soc. 116, 2655–2656 (1994).

    Article  CAS  Google Scholar 

  23. Sheldrick, G. M. Crystal Solution Program (Inst. fuer Anorg. Chemie, Gottingen, 1993).

    Google Scholar 

  24. Desiraju, G. R. Crystal Engineering 92–101 (Elsevier, New York, 1989).

    Google Scholar 

  25. Etter, M. C. Acc. chem. Res. 23, 120–126 (1990).

    Article  CAS  Google Scholar 

  26. Boeyens, J. C. A. & Pretorius, J. A. Acta crystallogr. B33, 2120–2124 (1977).

    Article  Google Scholar 

  27. Greenwood, N. N. & Earnshaw, A. Chemistry of the Elements 304 (Pergamon, Oxford, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkataraman, D., Lee, S., Zhang, J. et al. An organic solid with wide channels based on hydrogen bonding between macrocycles. Nature 371, 591–593 (1994). https://doi.org/10.1038/371591a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371591a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing