Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Tuesday 26 September 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 371, 591 - 593 (13 October 1994); doi:10.1038/371591a0

An organic solid with wide channels based on hydrogen bonding between macrocycles

D. Venkataraman*, Stephen Lee, Jinshan Zhang§ & Jeffrey S. Moore*

*Departments of Chemistry and Materials Science & Engineering, University of Illinois, Urbana, Illinois 61801, USA
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
Authors to whom correspondence should be addressed.
§Present address; Motorola Inc., 8000 West Sunrise Boulevard, Fort Lauderdale, Florida 33322,

RESEARCH on microporous solids has focused largely on inorganic materials such as aluminosilicates (zeolites), aluminophosphates, pillared clays and other layered materials1,2. An elusive goal has been the design of new materials with specific properties such as selective adsorption and catalytic activity. It would be very useful if the tools of molecular synthesis could be brought to bear on this problem. Here we report the design, based on a modular approach, and the crystal structure of an organic solid with large-diameter (about 9 Å) extended channels. The channels are formed from planar, rigid macrocyclic building blocks. Onto the outer rim of the macrocycles are attached phenolic groups, which form hexagonally closest-packed two-dimensional hydrogen-bonded networks. Extended channels result from the stacking of these layers in a way that maintains registry between the macrocyclic cavities, and these channels are filled with solvent molecules. This approach potentially offers a simple means to exercise control over pore size and shape in the solid state.

------------------

References

1. Ozin, G. A., Kuperman, A. & Stein, A. Angew. Chem. int. Edn engl. 28, 359−376 (1989).
2. Rolinson, D. R. Chem. Rev. 90, 867−878 (1990). | ISI | ChemPort |
3. Zerkowski, J. A., MacDonald, J. C., Seto, C. T., Wierda, D. A. & Whitesides, G. M. J. Am. chem. Soc. 116, 2382−2391 (1994). | Article | ChemPort |
4. Chang, Y. L., West, M. A., Fowler, F. W. & Lauher, J. W. J. Am. chem. Soc. 115, 5991−6000 (1993). | Article | ChemPort |
5. Lehn, J.-M., Mascal, M., DeCian, A. & Fischer, J. J. chem. Soc., Perkin Trans. 2 461−467 (1992). | Article | ChemPort |
6. Garcia-Tellado, F., Geib, S. J., Goswami, S. & Hamilton, A. D. J. Am. chem. Soc. 113, 9265−9269 (1991). | Article | ChemPort |
7. Etter, M. C. & Adsmond, D. A. J. chem. Soc., chem. Commun. 589−591 (1990). | Article | ChemPort |
8. Michaelides, A., Kiritsis, V., Skoulika, S. & Aubury, A. Angew. Chem. int. Edn engl. 32, 1495−1497 (1993).
9. Simard, M., Su, D. & Wuest, J. D. J. Am. chem. Soc. 113, 4696−4698 (1991). | Article | ISI | ChemPort |
10. Ermer, O. & Eling, A. Angew. Chem. int. Edn engl. 27, 829−833 (1988).
11. Ermer, O. & Lindenberg, L. Helv. chim. Acta. 74, 825−877 (1991). | Article | ChemPort |
12. Hoskins, B. F. & Robson, R. J. Am. chem. Soc. 112, 1546−1554 (1990). | Article | ISI | ChemPort |
13. Duchamp, D. J. & Marsh, R. E. Acta Crystallogr. B25, 5−19 (1969). | ChemPort |
14. Abrahams, B. F., Hoskins, B. F., Michail, D. M. & Robson, R. Nature 369, 727−729 (1994). | Article | ISI | ChemPort |
15. Davies, J. E., Kemula, W., Powell, H. M. & Smith, N. O. J. incl. Phenom. 1, 3−44 (1983). | Article | ChemPort |
16. Weber, E. Molecular Inclusion and Molecular Recognition-Clathrates I (ed. Weber, E.) 1 (Topics in Current Chemistry Vol. 140, Springer, Beriin, 1987). | ChemPort |
17. Abbott, S. J. et al. J. chem. Soc., chem. Commun. 796−797 (1982). | Article | ChemPort |
18. Weber, E., Pollex, R. & Czugler, M. J. org. Chem. 57, 4068−4070 (1992). | Article | ChemPort |
19. Ghadiri, M. R., Granja, J. R., Milligan, R. A., Mcree, D. E. & Khazanovich, N. Nature 366, 324−327 (1993). | Article | PubMed | ISI | ChemPort |
20. Zhang, J., Pesak, D. J., Ludwick, J. L. & Moore, J. S. J. Am. chem. Soc. 116, 4227−4239 (1994). | Article | ISI | ChemPort |
21. Zhang, J. & Moore, J. S. J. Am. chem. Soc. 114, 9701−9702 (1992). | Article | ChemPort |
22. Zhang, J. & Moore, J. S. J. Am. chem. Soc. 116, 2655−2656 (1994). | Article | ChemPort |
23. Sheldrick, G. M. Crystal Solution Program (Inst. fuer Anorg. Chemie, Gottingen, 1993).
24. Desiraju, G. R. Crystal Engineering 92−101 (Elsevier, New York, 1989).
25. Etter, M. C. Acc. chem. Res. 23, 120−126 (1990). | Article | ISI | ChemPort |
26. Boeyens, J. C. A. & Pretorius, J. A. Acta crystallogr. B33, 2120−2124 (1977).
27. Greenwood, N. N. & Earnshaw, A. Chemistry of the Elements 304 (Pergamon, Oxford, 1986).



© 1994 Nature Publishing Group
Privacy Policy