Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Repression of growth-regulated Gl cyclin expression by cyclic AMP in budding yeast

Abstract

A YEAST cell becomes committed to the cell division cycle only if it grows to a critical size1–4 and reaches a critical rate of protein synthesis5,6. The coordination between growth and division takes place at a control step during the Gl phase of the cell cycle called Start4. It relies on the Gl-specific cyclins encoded by CLN1, 2 and 3, which trigger Start through the activation of the Cdc28 protein kinase. In fact, the Cln cyclins are rate-limiting for Start execution and depend on growth7–10. Here we report that the cyclic AMP signal pathway11 modulates the dependency of Cln cyclins on growth. In particular, more growth is required to trigger Start because CLN1 and CLN2 are repressed by the cAMP signal, thus explaining the previously observed cAMP-dependent increase of the critical size and critical rate of protein synthesis12. Cln3 is not inhibited by the cAMP pathway and counteracts this mechanism by partially mediating the growth-dependent expression of other Gl cyclins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Johnston, G. C., Pringle, J. R. & Hartwell, L. H. Expl cell. Res. 105, 79–98 (1977).

    Article  CAS  Google Scholar 

  2. Johnston, G. C., Ehrhardt, C. W., Lorincz, A. & Carter, B. L. J. Bact. 137, 1–5 (1979).

    CAS  PubMed  Google Scholar 

  3. Lorincz, A. & Carter, B. L. A. J. gen. Microbiol. 113, 287–295 (1979).

    Article  Google Scholar 

  4. Pringle, J. R. & Hartwell, L. H. in Molecular Biology of Yeast Saccharomyces cerevisiae 97–142 (eds Strathern, J., Jones, E. & Broach, J.) (Cold Spring Harbor Press, New York, 1981).

    Google Scholar 

  5. Popolo, L., Vanoni, M. & Alberghina, L. Expl cell. Res. 142, 69–78 (1982).

    Article  CAS  Google Scholar 

  6. Moore, S. A. J. biol. Chem. 263, 9674–9681 (1988).

    CAS  PubMed  Google Scholar 

  7. Sudbery, P. E., Goodey, A. R. & Carter, B. L. A. Nature 288, 401–404 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Nash, R., Tokiwa, G., Anand, S., Erickson, K. & Futcher, B. EMBO J. 7, 4335–4346 (1988).

    Article  CAS  Google Scholar 

  9. Crass, F. Molec. cell. Biol. 8, 4675–4684 (1988).

    Article  Google Scholar 

  10. Hadwiger, J. A., Wittenberg, C., Richardson, H. E., De Barros Lopes, M. & Reed, S. I. Proc. natn. Acad. Sci. U.S.A. 86, 6255–6259 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Broach, J. R. & Deschenes, R. J. Adv. Cancer Res. 54, 79–139 (1990).

    Article  CAS  Google Scholar 

  12. Baroni, M. D., Monti, P., Marconi, G. & Alberghina, L. Expl cell. Res. 201, 299–306 (1992).

    Article  CAS  Google Scholar 

  13. Wilson, R. B., Renault, G., Jaquet, M. & Tatchell, K. FEBS Lett 325, 191–195 (1993).

    Article  CAS  Google Scholar 

  14. Cannon, J. F. & Tatchell, K. Molec. cell. Biol. 8, 2653–2663 (1987).

    Article  Google Scholar 

  15. Ogas, J., Andrews, B. J. & Herskowitz, I. Cell 66, 1015–1026 (1991).

    Article  CAS  Google Scholar 

  16. Fernandez-Sarabia, M. J., Sutton, A., Zhong, T. & Arndt, K. T. Genes Dev. 6, 2417–2428 (1992).

    Article  CAS  Google Scholar 

  17. Cross, F. R. & Tinkelenberg, A. H. Cell 65, 875–883 (1991).

    Article  CAS  Google Scholar 

  18. Cherest, H., Nguyen, N. T. & Surdin-Kerjan, Y. Gene 34, 269–281 (1985).

    Article  CAS  Google Scholar 

  19. Dirick, L. & Nasmyth, K. Nature 351, 754–757 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Tyers, M., Tokiwa, G. & Futcher, A. B. EMBO J. 12, 1955–1968 (1993).

    Article  CAS  Google Scholar 

  21. Reed, S. I. Genetics 95, 561–577 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Martegani, E., Vanoni, M. & Baroni, M. Eur. J. Biochem. 144, 205–210 (1984).

    Article  CAS  Google Scholar 

  23. Iida, H. & Yahara, I. J. Cell Biol. 98, 1185–1193 (1984).

    Article  CAS  Google Scholar 

  24. Cross, F. R. Molec. cell. Biol. 10, 6482–6490 (1990).

    Article  CAS  Google Scholar 

  25. Klein, C. & Struhl, K. Molec. cell. Biol. 14, 1920–1928 (1994).

    Article  CAS  Google Scholar 

  26. Cameron, S. et al. Cell 53, 555–566 (1988).

    Article  CAS  Google Scholar 

  27. Baroni, M. D., Martegani, E., Monti, P. & Alberghina, L. Molec. cell. Biol. 9, 2715–2723 (1989).

    Article  CAS  Google Scholar 

  28. Thevelein, J. M. Molec. Microbiol. 5, 1301–1307 (1991).

    Article  CAS  Google Scholar 

  29. Koch, C. & Nasmyth, K. Curr. Opin. Cell Biol. 6, 451–459 (1994).

    Article  CAS  Google Scholar 

  30. Hubler, L., Bradshaw-Rouse, J. & Heideman, W. Molec. cell. Biol. 13, 6274–6282 (1993).

    Article  CAS  Google Scholar 

  31. Smith, M. E., Dickinson, R. & Wheals, A. Yeast 6, 53–60 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baroni , M., Monti, P. & Alberghina, . Repression of growth-regulated Gl cyclin expression by cyclic AMP in budding yeast. Nature 371, 339–342 (1994). https://doi.org/10.1038/371339a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371339a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing