Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Sunday 22 October 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 370, 631 - 634 (25 August 1994); doi:10.1038/370631a0

Multiphoton-induced X-ray emission at 4–5 keV from Xe atoms with multiple core vacancies

A. McPherson, B. D. Thompson, A. B. Borisov, K. Boyer & C. K. Rhodes

Department of Physics (M/C 273), University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607–7059, USA

SEVERAL recent experimental findings1–3 have pointed to a possible route for making an X-ray laser, which could in principle provide an imaging system capable of molecular resolution4. The method involves the multiphoton excitation of atoms in van der Waals clusters or in molecules to yield ions with core-electron vacancies1,2, which can then decay by emission of X-rays, in conjunction with a self-chanelling propagation mode of electromagnetic radiation3. The multiphoton excitation may be stimulated by ultrahigh-brightness, subpicosecond pulses of laser light5. We have previously observed2 emission of X-rays from L-shell transitions in core-excited krypton atoms using this approach. Here we report the multiphoton production of X-rays of wavelength 2–3 Å from highly ionized xenon atoms which possess a large number of innershell vacancies while retaining several electrons in relatively weakly bound outer orbitals. Atoms with this ‘inverted’ electronic configuration are designated ‘hollow atoms’6,7. We find that generation of hollow atoms can become the dominant excitation mode for such systems, making their exploitation in an X-ray laser a real possibility.

------------------

References

1. McPherson, A., Luk, T. S., Thompson, B. D., Boyer, K. & Rhodes, C. K. Appl. Phys. B57, 337−347 (1993).
2. McPherson, A. et al. Phys. Rev. Lett. 72, 1810−1813 (1994). | Article | PubMed | ChemPort |
3. Borisov, A. B. et al. Phys. Rev. Lett. 68, 2309−2312 (1992). | Article | PubMed | ChemPort |
4. Solem, J. C. & Baldwin, G. C. Science 218, 229−235 (1982). | ISI | ChemPort |
5. Bouma, B., Luk, T. S. & Rhodes, C. K. J. opt. Soc. Am. B10, 1180−1184 (1993). | ChemPort |
6. Schneider, D. et al. Phys. Rev. A42, 3889−3895 (1990). | ChemPort |
7. Clark, M. W. et al. Phys. Rev. A47, 3983−3997 (1993). | ChemPort |
8. Mazing, M. A. & Shevel'ko, A. P. Proceedings of the Lebedev Physical Institute Vol. 179 (ed. Sobel'man, I.I.) 1−50 (Nova Science, Commack, New York, 1988).
9. Contunie, Y., Yaakobi, B., Feldman, U., Daschek, G. A. & Cowan, R. D. J. opt. Soc. Am. 71, 1309−1314 (1981).
10. Keane, C. J., Hammel, B. A., Osterheld, A. L. & Kania, D. R. Phys. Rev. Lett. 72, 3029−3032 (1994). | Article | PubMed | ChemPort |
11. Carlson, T. A., Nestor, C. W. Jr, Wasserman, N. & McDowell, J. D. Atomic Data 2, 63−99 (1970).
12. Augst, S., Strickland, D., Meyerhofer, D. D., Chin, S. L. & Eberly, J. A. Phys. Rev. Lett. 63, 2212−2215 (1989). | Article | PubMed | ChemPort |
13. Boyer, K., Thompson, B. D., McPherson, A. & Rhodes, C. K. J. Phys. B (in the press).
14. Thompson, B. D., McPherson, A., Boyer, K. & Rhodes, C. K. J. Phys. B (in the press).
15. Boyer, K. & Rhodes, C. K. J. Phys. B (in the press).



© 1994 Nature Publishing Group
Privacy Policy