Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Decade-scale trans-Pacific propagation and warming effects of an El Niño anomaly

Abstract

EL Nino events in the Pacific Ocean can have significant local effects lasting up to two years. For example the 1982-83 El Niño caused increases in the sea-surface height and temperature at the coasts of Ecuador and Peru1, with important consequences for fish populations2,3 and local rainfall4. But it has been believed that the long-range effects of El Nino events are restricted to changes transmitted through the atmosphere, for example causing precipitation anomalies over the Sahel5. Here we present evidence from modelling and observations that planetary-scale oceanic waves, generated by reflection of equatorial shallow-water waves from the American coasts during the 1982–H83 El Niño, have crossed the North Pacific and a decade later caused northward re-routing of the Kuroshio Extension—a strong current that normally advects large amounts of heat from the southern coast of Japan eastwards into the mid-latitude Pacific. This has led to significant increases in sea surface temperature at high latitudes in the northwestern Pacific, of the same amplitude and with the same spatial extent as those seen in the tropics during important El Niño events. These changes may have influenced weather patterns over the North American continent during the past decade, and demonstrate that the oceanic effects of El Nino events can be extremely long-lived.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cane, M. A. Science 16, 1189–1194 (1983).

    Article  ADS  Google Scholar 

  2. Barber, R. T. & Chavez, F. P. Science 16, 1203–1208 (1983).

    Article  ADS  Google Scholar 

  3. Barber, R. T. & Chavez, F. P. Nature 319, 279–285 (1983).

    Article  ADS  Google Scholar 

  4. Rasmusson, E. M. & Wallace, J. M. Science 16, 1195–1202 (1983).

    Article  ADS  Google Scholar 

  5. Folland, C. K. & Owen, J. A. in Rep. of a Workshop at the European Centre for Medium-Range Weather Forcasting 102–114 (Publ. No. 254, WMO, Geneva, Switzerland, 1988).

    Google Scholar 

  6. Born, G. H., Mitchell, J. L. & Heyler, G. A. J. astr. Sci. 35, 119–134 (1987).

    Google Scholar 

  7. Reynolds, R. W. & Marsico, D. C. J. Clim. 6, 768–774 (1993).

    Article  ADS  Google Scholar 

  8. Hurlburt, H. E., Wallcraft, A. J., Sirkes, Z. & Metzger, E. J. Oceanography 5, 9–18 (1992).

    Article  Google Scholar 

  9. Wyrtki, K. J. phys. Oceanogr. 5, 572–584 (1975).

    Article  ADS  Google Scholar 

  10. Gill, A. E. Atmosphere-Ocean Dynamics (Academic, Cambridge, UK, 1982).

    Google Scholar 

  11. Johnson, M. A. & O'Brien, J. J. J. geophys. Res. 95, 7155–7166 (1990).

    Article  ADS  Google Scholar 

  12. White, W. B. & Saur, J. F. T. J. phys. Oceanogr. 13, 531–544 (1983).

    Article  ADS  Google Scholar 

  13. Jacobs, G. A., Emery, W. J. & Born, G. H. J. phys. Oceanogr. 23, 1155–1175 (1991).

    Article  ADS  Google Scholar 

  14. Qiu, B. & Joyce, T. M. J. phys. Oceanogr. 9, 1062–1079 (1992).

    Article  ADS  Google Scholar 

  15. Glantz, M. H., Katz, R. W. & Nicholls, N. Teleconnections Linking Worldwide Climate Anomalies (Cambridge Univ. Press, 1991).

    Google Scholar 

  16. Barnett, T. P. & Preisendorfer, R. Mon. Weath. Rev. 115, 1825–1850 (1987).

    Article  ADS  Google Scholar 

  17. Teague, W. J., Carron, M. J. & Hogan, P. J. J. geophys. Res. 95, 7167–7183 (1990).

    Article  ADS  Google Scholar 

  18. Hurlburt, H. E. & Thompson, J. D. J. phys. Oceanogr. 10, 1611–1651 (1980).

    Article  ADS  Google Scholar 

  19. Wallcraft, A. J. NOARL Report No. 35 (Naval Research Lab, Stennis Space Center, 1991).

  20. Metzger, E. J., Hurlburt, H. E., Kindle, J. C., Sirkes, Z. & Pringle, J. M. Mar. Technol. Soc. J. 26, 23–32 (1992).

    Google Scholar 

  21. Hellerman, S. & Rosenstein, M. J. phys. Oceanogr. 13, 1093–1104 (1983).

    Article  ADS  Google Scholar 

  22. McCreary, J. J. phys. Oceanogr. 6, 632–645 (1976).

    Article  ADS  Google Scholar 

  23. Hurlburt, H. E., Kindle, J. C. & O'Brien, J. J. J. phys. Oceanogr. 6, 621–631 (1976).

    Article  ADS  Google Scholar 

  24. Kindle, J. C. & Phoebus, P. A. J. Geophys. Res. (in the press).

  25. Chelton, D. B. & Davis, R. E. J. phys. Oceanogr. 12, 757–784 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, G., Hurlburt, H., Kindle, J. et al. Decade-scale trans-Pacific propagation and warming effects of an El Niño anomaly. Nature 370, 360–363 (1994). https://doi.org/10.1038/370360a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370360a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing