Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed

Abstract

RADIOCARBON produced naturally in the upper atmosphere or arti-ficially during nuclear weapons testing is the main tracer used to validate models of oceanic carbon cycling, in particular the exchange of carbon dioxide with the atmosphere1–3 and the mixing parameters within the ocean itself4–7. Here we test the overall consistency of exchange fluxes between all relevant compartments in a simple model of the global carbon cycle, using measurements of the long-term tropospheric CO2 concentration8 and radiocarbon composition9–12, the bomb 14C inventory in the stratosphere13,14 and a compilation of bomb detonation dates and strengths15. We find that to balance the budget, we must invoke an extra source to account for 25% of the generally accepted uptake of bomb 14C by the oceans3. The strength of this source decreases from 1970 onwards, with a characteristic timescale similar to that of the ocean uptake. Significant radiocarbon transport from the remote high stratosphere and significantly reduced uptake of bomb 14C by the biosphere can both be ruled out by observational constraints. We therefore conclude that the global oceanic bomb 14C inventory should be revised downwards. A smaller oceanic bomb 14C inventory also implies a smaller oceanic radiocarbon penetration depth16, which in turn implies that the oceans take up 25% less anthropogenic CO2 than had previously been believed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stuiver, M. J. geophys. Res. 85, 2711–2718 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Stuiver, M., Oestlund, H. G. & McConnaughey, T. A. in SCOPE 16, Carbon Cycle Modelling (ed. Bolin, B.) 201–221 (Wiley, New York, 1981).

    Google Scholar 

  3. Broecker, W. S., Peng, T. H., Östlund, G. & Stuiver, M. J. geophys. Res. 90, 6953–6970 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Oeschger, H., Siegenthaler, U., Schotterer, U. & Gugelmann, A. Tellus 27, 168–192 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Siegenthaler, U. J. geophys. Res. 88, 3599–3608 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Toggweiler, J. R., Dixon, K. & Bryan, K. J. geophys. Res. 94, 8217–8242 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Maier-Reimer, E. Globl Biogeochem. Cycles 7, 645–677 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Keeling, C. D. & Whorf, T. P. in Trends 90 (eds Boden, T. A., Kanciruk, P. & Farrell, M. P.) 8–9 (Oak Ridge natn. Lab., Oak Ridge, 1990).

    Google Scholar 

  9. Levin, I. et al. Radiocarbon 27, 1–19 (1985).

    Article  CAS  Google Scholar 

  10. Levin, I., Kromer, B., Wagenbach, D. & Münnich, K. O. Tellus 39B, 89–95 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Manning, M. et al. Radiocarbon 32, 37–58 (1990).

    Article  Google Scholar 

  12. Levin, I. et al. in Radiocarbon After Four Decades: an Interdisciplinary Perspective (eds Taylor, R. E., Long, A. & Kra, R.) 503–518 (Springer, New York, 1992).

    Book  Google Scholar 

  13. Tans, P. P. in SCOPE 16, Carbon Cycle Modelling (ed. Bolin, B.) 131–157 (Wiley, New York, 1981).

    Google Scholar 

  14. Telegadas, K. in Report HASL 243 12–187 (N.T.I.S., Springfield, Virginia, 1971).

  15. Rath, H. K. thesis, Univ. Heidelberg (1988).

  16. Siegenthaler, U. & Sarmiento, G. Nature 365, 119–125 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Siegenthaler, U. & Joos, F. Tellus 44B, 186–207 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Harrison, K., Broecker, W. S. & Bonani, G., Globl Biogeochem. Cycles 7, 69–80 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Siegenthaler, U. & Oeschger, H. Tellus 39B, 140–154 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Suess, H. E. Science 122, 415–417 (1955).

    Article  ADS  CAS  Google Scholar 

  21. Bonka, H. in Strahlenschutzprobleme im Zusammenhang mit der Verwendung von Tritium und Kohlenstoff-14 und ihren Verbindungen (eds Stieve, F. E. & Kirstner, G.) 17–26 (Dietrich Reimer, Berlin, 1980).

    Google Scholar 

  22. UNSCEAR 1993 Report to the General Assembly (United Nations Publication, Sales No. E.94.IX.2).

  23. UNSCEAR 1982 Report to the General Assembly (United Nations Publication, Sales No. E.82.IX.8).

  24. Machta, L., List, R. J. & Telegadas, K. in Congress of the U.S., Hearing before Subcommittee in Research, Development and Radiation of the Joint Committee of Atomic Energy, 88th Congress 46–61 (1963).

    Google Scholar 

  25. Damon, P. & Sternberg, R. Radiocarbon 31, 697–703 (1989).

    Article  Google Scholar 

  26. Nakamura, T. et al. Radiocarbon 34, 745–752 (1992).

    Article  Google Scholar 

  27. Rasch, P. J., Tie, X. X., Boville, B. A. & Williamson, D. L. J. geophys. Res. 99, 999–1017 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Goudriaan, J. J. Expl. Bot. 43, 1111–1119 (1992).

    Article  Google Scholar 

  29. Peng, T. H. & Broecker, W. S. in Abstr. 4th International CO2 Conf. (eds Lambert, G. & Merlivat, L.) 214 (WMO-GAW-Report No. 89, WMO/TD-NO 561, Geneva, 1993).

    Google Scholar 

  30. Liss, P. & Merlivat, L. in The Role of Air-Sea Exchange in Geochemical Cycling (ed. Buat-Ménard, P.) 113–127 (Reidel, Dordrecht, 1986).

    Book  Google Scholar 

  31. Watson, A. in The Global Carbon Cycle (ed. Heimann, M.) 397–412 (Springer, Heidelberg, 1993).

    Book  Google Scholar 

  32. Broecker, W. S., Peng, T. H. & Engh, R. Radiocarbon 22, 565–598 (1980).

    Article  CAS  Google Scholar 

  33. Stuiver, M. & Quay, P. Earth planet. Sci. Lett. 53, 349–362 (1981).

    Article  ADS  Google Scholar 

  34. Stuiver, M. & Polach, H. A. Radiocarbon 19, 355–363 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesshaimer, V., Heimann, M. & Levin, I. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 370, 201–203 (1994). https://doi.org/10.1038/370201a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370201a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing