Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Degradation of trifluoroacetate in oxic and anoxic sediments

An Erratum to this article was published on 04 August 1994

Abstract

THE deleterious effect of chlorofluorocarbons on stratospheric ozone has led to international cooperation to end their use1– 3. The search for acceptable alternatives has focused on hydrofluorocarbons (HFCs) or hydrochlorofluorocarbons (HCFCs) which are attractive because they have relatively short atmospheric residence times4. HFCs and HCFCs are attacked by tropospheric hydroxyl radicals, leading to the formation of trifluoroacetate (TFA)5. Most of the atmospheric TFA is deposited at the Earth's surface6, where it is thought to be highly resistant to bacterial attack5. Therefore, use of HCFCs and HFCs may lead to accumulation of TFA in soils, where it could prove toxic or inhibitory to plants and soil microbial communities5,7. Although little is known about the toxic-ity of TFA, monofluoroacetate, which occurs at low levels in some plants8 and which is susceptible to slow attack by aerobic soil microbes9, is known to be acutely toxic10–13. Here we report that TFA can be rapidly degraded microbially under anoxic and oxic conditions. These results imply that significant microbial sinks exist in nature for the elimination of TFA from the environment. We also show that oxic degradation of TFA leads to the formation of fluoroform, a potential ozone-depleting compound with a much longer atmospheric lifetime than the parent compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Molina, M. & Rowland, F. S. Nature 249, 810–812 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Prather, M. J. & Watson, R. T. Nature 344, 729–734 (1992).

    Article  ADS  Google Scholar 

  3. Global Ozone Research and Monitoring Project (Rep. No. 20, World Meteorological Organization, Geneva, 1989).

  4. Nimitz, J. S. & Scaggs, S. R. Envir. Sci. Technol. 26, 739–743 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Franklin, J. Chemosphere 27, 1565–1601 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Rodriguez, J. M., Ko, M. K. W., Sze, N. D. & Heisey, C. W. Proc. AFEAS Workshop on Atmospheric Wet and Dry Deposition of Carbonyl and Haloacetyl Halides 25–32 (AFEAS, Washington DC, 1992).

    Google Scholar 

  7. Ingle, L. M. Proc. West Virginia Acad. Sci. 40, 1–11 (1968).

    CAS  Google Scholar 

  8. Oelrichs, P. B. & McEwan, T. Nature 190, 808–809 (1961).

    Article  ADS  CAS  Google Scholar 

  9. Wong, D. H., Kirkpatrick, W. E., King, D. R. & Kinnear, J. E. Soil Biol. Biochem. 24, 833–838 (1992).

    Article  CAS  Google Scholar 

  10. Kun, E. Citric Acid Cycle, Control and Compartmentation (ed. Lowenstein, J. M.) 279–339 (Dekker, New York, 1969).

    Google Scholar 

  11. Bong, C. L., Cole, A. J. L., Walker, J. R. L. & Peters, J. A. Soil Biol. Biochem. 11, 13–18 (1979).

    Article  Google Scholar 

  12. Notman, P. N.Z. J. Entomol. 12, 67–71 (1989).

    Article  Google Scholar 

  13. Cappenberg, T. E. & Prins, R. A. Antonie van Leeuwenhoek 40, 457–469 (1974).

    Article  CAS  Google Scholar 

  14. Lovley, D. R. & Woodward, J. C. Envir. Sci. Technol. 26, 925–929 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Oremland, R. S., Miller, L. G. & Strohmaier, F. E. Envir. Sci. Technol. 28, 514–520 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Oremland, R. S., Marsh, L. M. & Polcin, S. Nature 296, 143–145 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Oremland, R. S. & Culbertson, C. W. Nature 356, 421–423 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Miller, L. G., Coutlakis, M. D., Oremland, R. S. & Ward, B. B. Appl. Envir. Microbiol. 59, 2457–2464 (1993).

    CAS  Google Scholar 

  19. Oremland, R. S. & Capone, D. G. Adv. microb. Ecol. 10, 285–383 (1988).

    Article  CAS  Google Scholar 

  20. Oremland, R. S. in Biology of Anaerobic Microorganisms (ed. Zehnder, A. J. B.) 641–706 (Wiley, New York, 1988).

    Google Scholar 

  21. Oremland, R. S. & Polcin, S. Appl. Envir. Microbiol. 44, 1270–1276 (1982).

    CAS  Google Scholar 

  22. Christensen, D. & Blackburn, T. H. Mar. Biol. 7, 113–119 (1982).

    Article  Google Scholar 

  23. Mohn, W. W. & Tiedje, J. M. Microbiol. Rev. 56, 482–507 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Londry, K. L. & Fedorak, P. M. Arch. Microbiol. 160, 137–143 (1993).

    Article  CAS  Google Scholar 

  25. Oremland, R. S. & Zehr, J. P. Appl. Envir. Microbiol. 52, 1031–1036 (1986).

    CAS  Google Scholar 

  26. Taylor, B. F., Hearn, W. L. & Pincus, S. Arch. Microbiol. 122, 301–306 (1979).

    Article  CAS  Google Scholar 

  27. Bauchop, T. J. Bacteriol. 94, 171–175 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wood, J. M., Kennedy, F. S. & Wolfe, R. S. Biochemistry 7, 1707–1713 (1968).

    Article  CAS  Google Scholar 

  29. Bouwer, E. J. & McCarty, P. L. Appl. Envir. Microbiol. 45, 1295–1299 (1983).

    CAS  Google Scholar 

  30. Bouwer, E. J. & McCarty, P. L. Envir. Sci. Technol. 45, 1286–1294 (1983).

    CAS  Google Scholar 

  31. Oremland, R. S. & Culbertson, C. W. Appl. Envir. Microbiol. 58, 2983–2992 (1992).

    CAS  Google Scholar 

  32. DeFlaun, M. F., Ensley, B. D. & Steffan, R. J. Biotechnology 10, 1576–1578 (1992).

    CAS  Google Scholar 

  33. Oremland, R. S. Appl. Envir. Microbiol. 42, 122–129 (1981).

    CAS  Google Scholar 

  34. Culbertson, C. W., Zehnder, A. J. B. & Oremland, R. S. Appl. Envir. Microbiol. 41, 396–403 (1981).

    CAS  Google Scholar 

  35. Culbertson, C. W., Strohmaier, F. E. & Oremland, R. S. Origins Life Evol. Biosphere 18, 397–407 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visscher, P., Culbertson, C. & Oremland, R. Degradation of trifluoroacetate in oxic and anoxic sediments. Nature 369, 729–731 (1994). https://doi.org/10.1038/369729a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369729a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing