Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Monday 24 July 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 369, 467 - 469 (09 June 1994); doi:10.1038/369467a0

Conducting tin halides with a layered organic-based perovskite structure

D. B. Mitzi*, C. A. Feild*, W. T. A. Harrison & A. M. Guloy

*IBM T. J. Watson Research Center, PO Box 218, Yorktown Heights, New York 10598, USA
Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204–5641, USA

THE discovery1 of high-temperature superconductivity in layered copper oxide perovskites has generated considerable fundamental and technological interest in this class of materials. Only a few other examples of conducting layered perovskites are known; these are also oxides such as (La1-xSrx)n+1 MnnO3n+1 (ref. 2), Lan+1NinO3n+1 (ref. 3) and Ban+1PbnO3n+1 (ref. 4), all of which exhibit a trend from semiconducting to metallic behaviour with increasing number of perovskite layers (n). We report here the synthesis of a family of organic-based layered halide perovskites, (C4H9NH3)2(CH3NH3)n-1Snnl3n+1 which show a similar transition from semiconducting to metallic behaviour with increasing n. The incorporation of an organic modulation layer between the conducting tin iodide sheets potentially provides greater flexibility for tuning the electrical properties of the perovskite sheets, and we suggest that such an approach will prove valuable for exploring the range of transport properties possible with layered perovskites.

------------------

References

1. Bednorz, J. G. & Müller, K. A. Z. Phys. B64, 189−193 (1986). | Article | ChemPort |
2. Mohan Ram, R. A., Ganguly, P. & Rao, C. N. R. J. Solid St. Chem. 70, 82−87 (1987).
3. Mohan Ram, R. A., Ganapathi, L., Ganguly, P. & Rao, C. N. R. J. Solid St. Chem. 63, 139−147 (1986).
4. Cava, R. J. et al. Phys. Rev. B46, 14101−14104 (1992). | ChemPort |
5. Ruddlesden, S. N. & Popper, P. Acta crystallogr. 11, 54−55 (1958). | Article | ISI | ChemPort |
6. Arend, H., Huber, W., Mischgofsky, F. H. & Richter-Van Leeuwen, G. K. J. Cryst. Growth 43, 213−223 (1978). | Article | ChemPort |
7. Calabrese, J. et al. J. Am. chem. Soc. 113, 2328−2330 (1991). | Article | ChemPort |
8. Mitzi, D. B., Feild, C. A., Schlesinger, Z. & Laibowitz, R. B. J. Solid St. Chem. (in the press).
9. Yamada, Y., Matsui, T., Tsuritani, T., Okuda, T., & Ichiba, S. Z. Naturf. 45a, 307−312 (1990).
10. Xu, Q., Eguchi, T., Nakayama, H., Nakamura, N. & Kishita, M. Z. Naturf. 46a, 240−246 (1990).
11. Needham, G. F., Willett, R.D. & Franzen, H. F. J. phys. Chem. 88, 674−680 (1984). | Article | ChemPort |
12. Little, W. A. Phys. Rev. A 134, 1416−1424 (1964). | Article | ISI |
13. Newns, D. M., Tsuei, C. C., Pattnaik, P. C. & Kane, C. L. Comments cond. Mater Phys. 15, 273−302 (1992). | ChemPort |
14. Harshman, D. R. & Mills, A. P. Jr Phys. Rev. B45, 10684−10712 (1992).



© 1994 Nature Publishing Group
Privacy Policy