Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selectivity of MHC-encoded peptide transporters from human, mouse and rat

Abstract

MAJOR histocompatibility complex (MHC) class I molecules present peptides from degraded intracellular antigens to CD8+ T cells1. These peptides are translocated in an ATP-dependent fashion2–4 into the lumen of the endoplasmic reticulum (ER) for binding to class I molecules5,6 by means of the MHC-encoded transporters associated with antigen processing, TAP1 and TAP2. These are members of a family of proteins containing an ATP-binding cassette and form heterodimers in the ER membrane7–10. Defects in the genes encoding TAP1 or TAP2 account for impaired class I assembly and antigen presentation in several human and rodent cell lines7,11–13. Whereas MHC class I molecules select peptides according to binding motifs14–17, it is not clear to what extent the TAP1–TAP2 transporters have peptide sequence and length specificity. Previous studies of the rat MHC class I molecule, RT1Aa, suggested a specific conveyance of peptides by rat TAP1–TAP2 (ref. 18). Here we substitute the amino- and carboxy-terminal and the penultimate amino-acid residues of model peptides to show that these residues influence the efficiency of transport. Human TAP and rat TAPa translocated peptides with hydrophobic and basic C termini, whereas mouse TAP and rat TAPu preferred peptides with hydrophobic C termini. This pattern correlates with the predominant peptide binding profiles of mouse and human class I molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Townsend, A. & Bodmer, H. A. Rev. Immun. 7, 601–624 (1989).

    Article  CAS  Google Scholar 

  2. Neefjes, J. J., Momburg, F. & Hämmerling, G. J. Science 261, 769–771 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Shepherd, J. C. et al. Cell 74, 577–584 (1993).

    Article  CAS  Google Scholar 

  4. Androlewicz, M. J., Anderson, K. S. & Cresswell, P. Proc. natn. Acad. Sci. U.S.A. 90, 9130–9134 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Townsend, A. et al. Cell 62, 285–295 (1990).

    Article  CAS  Google Scholar 

  6. Schumacher, T. N. M. et al. Cell 62, 563–567 (1990).

    Article  CAS  Google Scholar 

  7. Kelly, A. et al. Nature 355, 641–644 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Spies, T. et al. Nature 355, 644–646 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Higgins, C. F. A. Rev. Cell Biol. 8, 67–113 (1992).

    Article  CAS  Google Scholar 

  10. Kleijmeer, M. J. et al. Nature 357, 342–344 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Spies, T. & DeMars, R. Nature 351, 323–324 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Powis, S. J. et al. Nature 354, 528–531 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Attaya, M. et al. Nature 355, 647–649 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Falk, K., Rötzschke, O., Stevanovic, S., Jung, G. & Rammensee, H.-G. Nature 351, 290–296 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Rammensee, H.-G., Falk, K. & Rötschke, O. A. Rev. Immun. 11, 213–244 (1993).

    Article  CAS  Google Scholar 

  16. Jardetzky, T. S., Lane, W. S., Robinson, R. A., Madden, D. R. & Wiley, D. C. Nature 353, 326–329 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Zhang, Q.-J., Gavioli, R., Klein, G. & Masucci, M. G. Proc. natn. Acad. Sci. U.S.A. 90, 2217–2221 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Powis, S. J. et al. Nature 357, 211–215 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Salter, R. D., Howell, D. N. & Cresswell, P. Immunogenetics 21, 235–246 (1985).

    Article  CAS  Google Scholar 

  20. Momburg, F. et al. Nature 360, 174–177 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Young, Y. et al. J. biol. Chem. 267, 11669–11672 (1992).

    Google Scholar 

  22. Powis, S. J., Howard, J. C. & Butcher, G. W. J. exp. Med. 173, 913–921 (1991).

    Article  CAS  Google Scholar 

  23. Madden, D. R., Gorda, J. C., Strominger, J. L. & Wiley, D. C. Nature 353, 321–325 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Fremont, D. H., Matsumura, M., Stura, E. A., Peterson, P. A. & Wilson, I. A. Science 257, 919–927 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Bjorkman, P. J. & Parham, P. A. Rev. Biochem. 59, 253–288 (1990).

    Article  CAS  Google Scholar 

  26. Guo, H.-C. et al. Nature 360, 364–366 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Rada, C. et al. Proc. natn. Acad. Sci. U.S.A. 87, 2167–2171 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Deverson, E. V. et al. Nature 348, 738–741 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momburg, F., Roelse, J., Howard, J. et al. Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Nature 367, 648–651 (1994). https://doi.org/10.1038/367648a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367648a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing