Nature Publishing Group, publisher of Nature, and other science journals and reference works
my account e-alerts subscribe register
Thursday 21 September 2017
Journal Home
Current Issue
Download PDF
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 367, 634 - 636 (17 February 1994); doi:10.1038/367634a0

Model assessment of the role of natural variability in recent global warming

R. J. Stouffer, S. Manabe & K. Ya. Vinnikov

Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, Princeton, New Jersey 08542, USA

SINCE the late nineteenth century, the global mean surface air temperature has been increasing at the rate of about 0.5 °C per century1–3, but our poor understanding of low-frequency natural climate variability has made it very difficult to determine whether the observed warming trend is attributable to the enhanced green-house effect associated with increased atmospheric concentrations of greenhouse gases4,5. Here we evaluate the observed warming trend using a 1,000-year time series of global temperature obtained from a mathematical model of the coupled ocean–atmosphere–land system. We find that the model approximately reproduces the magnitude of the annual to interdecadal variation in global mean surface air temperature. But throughout the simulated time series no temperature change as large as 0.5 °C per century is sustained for more than a few decades. Assuming that the model is realistic, these results suggest that the observed trend is not a natural feature of the interaction between the atmosphere and oceans. Instead, it may have been induced by a sustained change in the thermal forcing, such as that resulting from changes in atmospheric greenhouse gas concentrations and aerosol loading.



1. Vinnikov, K. Ya., Groisman, P. Ya. & Lugina, K. M. Publ. No. ORNL/CDIAC-46 (Oak Ridge National Lab., Oak Ridge, 1991).
2. Jones, P. D. & Wigley, T. M. L. Publ. No. ORNL/CDIAC-46 (Oak Ridge National Lab., Oak Ridge, 1991).
3. Hansen, J., Wilson, H. & Ruedy, R. Publ. No. ORNL/CDIAC-46 (Oak Ridge National Lab., Oak Ridge, 1991).
4. Intergovernmental Panel on Climate Change Climate Change (eds Houghton, J. T., Jenkins, G. J. & Ephraums, J. J.) (Cambridge Univ. Press, 1990).
5. Intergovernmental Panel on Climate Change Climate Change (eds Houghton, J. T., Callander, B. A. & Varney, S. K.) (Cambridge Univ. Press, 1992).
6. Manabe, S., Stouffer, R. J., Spelman, M. J. & Bryan, K. J. Clim. 4, 785−818 (1991). | Article | ISI |
7. Delworth, T., Manabe, S. & Stouffer, R. J. J. Clim. 6, 1993−2011 (1993). | Article | ISI |
8. Stouffer, R. J., Manabe, S. & Bryan, K. Nature 342, 660−662 (1989). | Article | ISI |
9. Manabe, S., Spelman, M. J. & Stouffer, R. J. J. Clim. 5, 105−126 (1992). | Article | ISI |
10. Manabe, S. & Stouffer, R. J. Nature 346, 215−218 (1993).
11. Lau, N. C., Philander, S. G. H. & Nath, M. J. J. Clim. 4, 284−307 (1992).
12. Jones, P. B. Clim. Monit. 17, 81−89 (1988).
13. Hansen, J. et al. J. geophys. Res. 93, 9341−9864 (1988). | ChemPort |
14. Barnet, T. P., Del Genio, A. D. & Ruedy, R. A. J. geophys. Res. 97, 7341−7354 (1992).
15. Wigley, T. M. L. & Raper, S. C. B. Nature 344, 324−327 (1990). | Article | ISI |
16. Hasselmann, K. Tellus 28, 473−485 (1976). | ISI |
17. Bryan, K. & Lewis, L. J. geophys. Res. 84, 2503−2517 (1979). | ISI |
18. Chatfield, C. The Analysis of Timeseries: an Introduction. Ch. 7 (Chapman and Hall, London, 1989).

© 1994 Nature Publishing Group
Privacy Policy