Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Thursday 25 May 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 367, 284 - 287 (20 January 1994); doi:10.1038/367284a0

Prediction of bone density from vitamin D receptor alleles

Nigel A. Morrison, Jian Cheng Qi, Akifumi Tokita, Paul J. Kelly, Linda Crofts, Tuan V. Nguyen, Philip N. Sambrook & John A. Eisman

Bone and Mineral Research Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales 2010, Australia

BONE density achieved in early adulthood is the major determinant of risk of osteoporotic fracture. Up to 60% of women1,2 suffer osteoporotic fractures as a result of low bone density2, which is under strong genetic control3–6 acting through effects on bone turnover7,8. Here we show that common allelic variants in the gene encoding the vitamin D receptor9 can be used to predict differences in bone density, accounting for up to 75% of the total genetic effect on bone density in healthy individuals. The genotype associated with lower bone density was overrepresented in postmenopausal women with bone densities more than 2 standard deviations below values in young normal women. The molecular mechanisms by which bone density is regulated by the vitamin D receptor gene are not certain, although allelic differences in the 3' untranslated region may alter messenger RNA levels. These findings could open new avenues to the development and targeting of prophylactic interventions. It follows that other pathophysiological processes considered to be subject to complex multifactorial genetic regulation may also be modulated by a single gene with pleiotropic transcriptional actions.

------------------

References

1. Riggs, B. L. & Melton, L. J. New Engl. J. Med. 314, 1676−1686 (1986). | PubMed | ChemPort |
2. Nguyen, T. V. et al. Br. Med. J. 307, 1111−1115 (1993). | ChemPort |
3. Smith, D. M., Nance, W. E., Kang, K. W., Christian, J. C. & Johnston, C. C. Jnr. J. clin. Invest. 52, 2800−2808 (1973). | PubMed | ISI | ChemPort |
4. Moller, M. et al. Calcif. Tissue Res. 25, 197−201 (1978). | PubMed | ChemPort |
5. Pocock, N. A. et al. J. clin. Invest. 80, 706−710 (1987). | PubMed | ISI | ChemPort |
6. Dequeker, J. et al. Bone 8, 207−209 (1987). | Article | PubMed | ChemPort |
7. Seeman, E. et al. New Engl. J. Med. 320, 554−558 (1989). | PubMed | ISI | ChemPort |
8. Kelly, P. J., Eisman, J. A. & Sambrook, P. N. Osteoporosis Int. 1, 1−5 (1990).
9. Kelly, P. J. et al. J. clin. Endocrin. Metab. 72, 808−814 (1991). | ChemPort |
10. Morrison, N. A., Yeoman, R., Kelly, P. J. & Eisman, J. A. Proc. natn. Acad. Sci. U.S.A. 89, 6665−6669 (1992). | ChemPort |
11. Pocock, N. A. et al. Med. J. Aust. 146, 293−297 (1987). | PubMed | ChemPort |
12. Pocock, N. A. et al. J. Bone Min. Res. 3, 601−604 (1988). | ChemPort |
13. Pocock, N. A., Eisman, J. A., Yeates, M. G., Sambrook, P. N. & Eberl, S. J. clin. Invest. 78, 618−621 (1986). | PubMed | ChemPort |
14. Pocock, N. A. et al. J. Bone Min. Res. 4, 441−448 (1989). | ChemPort |
15. Haseman, J. K. & Elston, R. C. Behavl Genet. 1, 11−19 (1970) | ChemPort |
16. Haseman, J. K. & Elston, R. C. Behavl Genet. 2, 3−19 (1972). | ChemPort |
17. Morrison, N. A. et al. Science 246, 1158−1161 (1989). | PubMed | ChemPort |
18. Demay, M. B., Roth, D. A. & Kronenberg, H. M. J. biol. Chem. 264, 2279−2282 (1989). | PubMed | ChemPort |
19. Kerner, S. A., Scott, R. A. & Pike, J. W. Proc. natn. Acad. Sci. U.S.A. 86, 4455−4459 (1989). | ChemPort |
20. Bell, N. H. et al. J. clin. Invest. 76, 470−473 (1985). | PubMed | ChemPort |
21. Arveiler, B., Petkovich, M., Mandel, J. L. & Chambon, P. Nucleic Acids Res. 16, 6252 (1988). | PubMed | ChemPort |



© 1994 Nature Publishing Group
Privacy Policy