Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane

Abstract

The 2.2 Å crystal structure of the 251K α2β2γ2 dimeric hydroxylase protein of methane mono-oxygenase from Methylococcus capsulatus (Bath) reveals the geometry of the catalytic di-iron core. The two iron atoms are bridged by exogenous hydroxide and acetate ligands and further coordinated by four glutamate residues, two histidine residues and a water molecule. The dinuclear iron centre lies in a hydrophobic active-site cavity for binding methane. An extended canyon runs between αβ pairs, which have many long α-helices, for possible docking of the reductase and coupling proteins required for catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Higgins, I. J., Best, D. J. & Hammond, R. C. Nature 286, 561–564 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Pearman, G. I. & Fraser, P. J. Nature 332, 489–190 (1988).

    Article  ADS  Google Scholar 

  3. Colby, J. & Dalton, H. Biochem. J. 171, 461–468 (1978).

    Article  CAS  Google Scholar 

  4. Woodland, M. P., Patil, D. S., Cammack, R. & Dalton, H. Biochim, biophys. Acta 873, 237–242 (1986).

    Article  CAS  Google Scholar 

  5. Fox, B. G., Surerus, K. K., Münck, E. & Lipscomb, J. D. J. biol. Chem. 263, 10553–10556 (1988).

    CAS  PubMed  Google Scholar 

  6. DeWitt, J. G. et al. J. Am. chem. Soc. 113, 9219–9235 (1991).

    Article  CAS  Google Scholar 

  7. Que, L. Jr & True, A. E. Prog. inorg. Chem. 38, 97–200 (1990).

    CAS  Google Scholar 

  8. Vincent, J. B., Olivier-Lilley, G. L. & Averill, B. A. Chem. Rev. 90, 1447–1467 (1990).

    Article  CAS  Google Scholar 

  9. Kurtz, D. M. Jr & Pickril, B. C. Biochem. biophys. Res. Commun. 181, 337–341 (1991).

    Article  CAS  Google Scholar 

  10. Fox, B. G., Shanklin, J., Somerville, C. & Münck, E. Proc. natn. Acad. Sci. U.S.A. 90, 2486–2490 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Lund, J. & Dalton, H. Eur. J. Biochem. 147, 291–296 (1985).

    Article  CAS  Google Scholar 

  12. Green, J. & Dalton, H. J. biol. Chem. 260, 15795–15801 (1985).

    CAS  PubMed  Google Scholar 

  13. Colby, J., Stirling, D. I. & Dalton, H. Biochem. J. 165, 395–402 (1977).

    Article  CAS  Google Scholar 

  14. Lindstrom, J. E. et al. Appl. environ. Microbiol. 57, 2514–2522 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pritchard, P. H. & Costa, C. F. Environ. Sci. Technol. 25, 372–379 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Green, J. & Dalton, H. J. biol. Chem. 264, 17698–17703 (1989).

    CAS  PubMed  Google Scholar 

  17. Fox, B. G., Borneman, J. G., Wackett, L. P. & Lipscomb, J. D. Biochemistry 29, 6419–6427 (1990).

    Article  CAS  Google Scholar 

  18. Periana, R. A. et al. Science 259, 340–343 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Ericson, A. et al. J. Am. chem. Soc. 110, 2330–2332 (1988).

    Article  CAS  Google Scholar 

  20. DeRose, V., Liu, K. E., Lippard, S. J. & Hoffman, B. J. Am. chem. Soc. 115, 6440–6441 (1993).

    Article  CAS  Google Scholar 

  21. Fox, B. G. et al. J. Am. chem. Soc. 115, 3688–3701 (1993).

    Article  CAS  Google Scholar 

  22. Thomann, H. et al. J. Am. chem. Soc. 115, 8881–8882 (1993).

    Article  CAS  Google Scholar 

  23. Stainthorpe, A. C., Lees, V., Salmond, G. P. C., Dalton, H. & Murrell, J. C. Gene 91, 27–34 (1990).

    Article  CAS  Google Scholar 

  24. Nordlund, P., Dalton, H. & Eklund, H. FEBS Lett. 307, 257–262 (1992).

    Article  CAS  Google Scholar 

  25. Nordlund, P., Sjöberg, B.-M. & Eklund, H. Nature 345, 593–598 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Nordlund, P. & Eklund, H. J. molec. Biol. 232, 123–164 (1993).

    Article  CAS  Google Scholar 

  27. Prior, S. D. & Dalton, H. FEMS Microbiol. Lett. 29, 105–109 (1985).

    Article  CAS  Google Scholar 

  28. Fox, B. G., Froland, W. A., Dege, J. E. & Lipscomb, J. D. J. biol. Chem. 264, 10023–10033 (1989).

    CAS  PubMed  Google Scholar 

  29. Atta, M., Fontecave, M., Wilkins, P. C. & Dalton, H. Eur. J. Biochem. 217, 217–223 (1993).

    Article  CAS  Google Scholar 

  30. Hamman, S. et al. Biochem. biophys. Res. Commun. 195, 594–599 (1993).

    Article  CAS  Google Scholar 

  31. Andersson, K. K., Elgren, T. E., Que, L. Jr & Lipscomb, J. D. J. Am. chem. Soc. 114, 8711–8713 (1992).

    Article  CAS  Google Scholar 

  32. Priestley, N. D. et al. J. Am. chem. Soc. 114, 7561–7562 (1992).

    Article  CAS  Google Scholar 

  33. Liu, K. E., Johnson, C. C., Newcomb, M. & Lippard, S. J. J. Am. chem. Soc. 115, 939–947 (1993).

    Article  CAS  Google Scholar 

  34. Rardin, R. L., Tolman, W. B. & Lippard, S. J. New. J. Chem. 15, 417–430 (1991).

    CAS  Google Scholar 

  35. Poulos, T. L., Finzel, B. C. & Howard, A. J. J. molec. Biol. 195, 687–700 (1987).

    Article  CAS  Google Scholar 

  36. Raag, R., Martinis, S. A., Sligar, S. G. & Poulos, T. L. Biochemistry 30, 11420–11429 (1991).

    Article  CAS  Google Scholar 

  37. Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, G. C. & Kraut, J. J. biol. Chem. 260, 16122–16130 (1985).

    CAS  PubMed  Google Scholar 

  38. Liu, K. E. & Lippard, S. J. J. biol. Chem. 266, 12836–12839 (1991).

    CAS  PubMed  Google Scholar 

  39. Fox, B. G., Liu, Y., Dege, J. E. & Lipscomb, J. D. J. biol. Chem. 266, 540–550 (1991).

    CAS  PubMed  Google Scholar 

  40. Froland, W. A., Andersson, K. K., Lee, S.-K., Liu, Y. & Lipscomb, J. D. J. biol. Chem. 267, 17588–17597 (1992).

    CAS  PubMed  Google Scholar 

  41. Liu, K. E., Feig, A. L., Goldberg, D. P., Watton, S. P. & Lippard, S. J. in The Activation of Dioxygen and Homogeneous Catalytic Oxidation (eds Barton, D. H. R., Martell, A. E. & Sawyer, D.) (Plenum, New York, 1993).

    Google Scholar 

  42. Jiang, Y., Wilkins, P. C. & Dalton, H. Biochem. biophys. Acta 1163, 105–112 (1993).

    CAS  PubMed  Google Scholar 

  43. Nordlund, I., Powlowski, J. & Shingler, V. J. Sact. 172, 6826–6833 (1990).

    CAS  Google Scholar 

  44. Yen, K. M. et al. J. Bact. 173, 5315–5327 (1991).

    Article  CAS  Google Scholar 

  45. Rosenzweig, A. C., Frederick, C. A. & Lippard, S. J. J. molec. Biol. 227, 283–285 (1992).

    Article  Google Scholar 

  46. Knight, S. thesis, Swedish Univ. Agric. Sci., 1989.

  47. Terwillinger, T. C. & Eisenberg, D. Acta crystallogr. A39, 813–817 (1983).

    Article  Google Scholar 

  48. Otwinowski, Z. MLPHARE, CCP4 Proc. 80–88 (Daresbury Lab., Warrington, UK, 1991).

    Google Scholar 

  49. Wang, B. C. Meth. Enzym. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  50. Jones, T. A. in Molecular Replacements (eds Dodson, E.J.) 91–105 (SERC, Daresbury, UK, 1992).

    Google Scholar 

  51. Rould, M. A., Perona, J. J. & Steitz, T. A. Acta crystallogr. A48, 751–756 (1992).

    Article  CAS  Google Scholar 

  52. Nordlund, P. thesis, Swedish Univ. Agric. Sci., 1990.

  53. Jones, T. A. & Thirup, S. EMBO J. 5, 829–822 (1985).

    Google Scholar 

  54. Jones, T. A., Bergdoll, M. & Kjeldgaard, M. in Crystallographic Computing and Modeling Methods in Molecular Design (eds Bugg, C. & Ealick, S.) (Springer, New York, 1989).

    Google Scholar 

  55. Stainthorpe, A. C., Murrell, J. C., Salmond, G. P. C., Dalton, H. & Lees, V. Arch. Microbiol. 152, 154–159 (1989).

    Article  CAS  Google Scholar 

  56. Brünger, T. A., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  57. Kraulis, P. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenzweig, A., Frederick, C., Lippard, S. et al. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366, 537–543 (1993). https://doi.org/10.1038/366537a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366537a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing