Nature Publishing Group, publisher of Nature, and other science journals and reference works
my account e-alerts subscribe register
Tuesday 17 October 2017
Journal Home
Current Issue
Download PDF
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 366, 265 - 268 (18 November 1993); doi:10.1038/366265a0

Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome

S. Brenner*, G. Elgar, R. Sanford, A. Macrae, B. Venkatesh & S. Aparicio

MRC Molecular Genetics Unit and Department of Medicine, University of Cambridge Clinical School, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
*Address for correspondence: Department of Medicine, University of Cambridge Clinical School, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK.
On leave from the Institute of Molecular and Cell Biology, National University of Singapore, Singapore.

CLONING and sequencing techniques now allow us to characterize genes directly instead of having to deduce their properties from their effects. This new genetics reaches its apotheosis in the plan to obtain the complete DNA sequence of the human genome, but this is far beyond the capacity of present sequencing methods. Small 'model' genomes, such as those of Escherichia coli (4.7 megabases (Mb)1 and yeast (14 Mb)2, or even those of Caenorhabditis elegans (100 Mb) and Drosophila(165 Mb), are better scaled to existing technology. The yeast genome will contain genes with functions common to all eukaryotic cells, and those of simple multi-cellular organisms may throw light on the genetic specification of more complex functions. However, vertebrates differ in their morphology and development, so the ideal model would be a vertebrate genome of minimum size and complexity but with maximum homology to the human genome. Here we report the characterization of the small genome (400 Mb) of the tetraodontoid fish, Fugu rubripes 5. A random sequencing approach supported by gene probing shows that the haploid genome contains 400 Mb of DNA, of which more that 90% is unique. This genome is 7.5 times smaller than the human genome and because it has a similar gene repertoire it is the best model genome for the discovery of human genes.



1. Daniels, D. L., Plunkett, G., Burland, V. & Blattner, F. R. Science 257, 771−778 (1992).
2. Oliver, S. G. et al. Nature 357, 38−46 (1992).
3. Sulston, J. et al. Nature 356, 37−41 (1992).
4. Ajioka, J. W. et al. Chromosoma 100, 459−509 (1991).
5. Pufferfishes Available in Japan (Chuou-Houki, Tokyo, 1984).
6. Hinegardner, R. Am. Nat. 102, 517−523 (1968).
7. Pizon, V., Cuny, G. & Bernadi, G. Eur. J. Biochem. 140, 25−30 (1984).
8. Smith, C. L., Econome, J. G., Schutt, A., Kico, S. & Cantor, C. R. Science 236, 1448−1453 (1987).
9. Hinegardner, R. & Rosen, D. E. Am. Nat. 106, 621−644 (1972).
10. Moore, S. S. et al. Genomics 10, 654−660 (1991).
11. Beckmann, J. S. & Weber, J. L. Genomics 12, 627−631 (1992).
12. Stallings, R. L. et al. Genomics 10, 807−815 (1991).
13. Lanza, F., Kieffer, N., Phillips, D. R. & Fitzgerald, L. A. J. biol. Chem. 265, 18098−18103 (1990).
14. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463−5467 (1977).
15. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. J. molec. Biol. 215, 403−410 (1990).
16. Parsons, J. D., Brenner, S. & Bishop, M. J. CABIOS 8, 461−466 (1992).
17. Devereux, J. R., Haeberli, P. & Smithies, O. Nucleic Acids Res. 12, 387−395 (1984).
18. Kam, J., Matthes, H. W. D., Gait, M. J. & Brenner, S. Gene 32, 217−224 (1984).
19. Church, G. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 81, 1991−1994 (1984).

© 1993 Nature Publishing Group
Privacy Policy