Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Sunday 23 July 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 365, 751 - 753 (21 October 1993); doi:10.1038/365751a0

Visual pattern recognition in Drosophila involves retinotopic matching

Marcus Dill, Reinhard Wolf & Martin Heisenberg*

Theodor-Boveri-lnstitut für Biowissenschaften (Biozentrum), Lehrstuhl für Genetik, Am Hubland, D-97074 Würzburg, Germany
* To whom correspondence should be addressed

HONEYBEES remember the shapes of flowers and are guided by visual landmarks on their foraging trips1,2. How insects recognize visual patterns is poorly understood. Experiments suggest that they try to match retinotopically the incoming visual pattern with a previously stored memory image2–7. But bees can be conditioned to individual pattern parameters such as orientation of contours, colour or size2,8–11. These and other results are difficult to reconcile with simple template matching. In such investigations, freely moving animals are observed; their behaviour and visual input, therefore, are not well known. Mostly, processing strategies are inferred from stimulus design. We have studied visual pattern recognition with tethered flies (Drosophila melanogaster) in a flight simulator and report here that flies store visual images at, or together with, fixed retinal positions and can retrieve them from there only5. Position invariance, an acknowledged property of human pattern recognition, may not exist as a primary mechanism in insects.

------------------

References

1. Tinbergen, N. Z. vergl. Physiol. 15, 305−334 (1932).
2. Wehner, R. in Handbook of Sensory Physiology Vol. VII/6C (ed. Autrum, H. J.) (Springer, Berlin, 1981).
3. Wehner, R. J. comp. Physiol. 77, 256−277 (1972). | Article |
4. Cartwright, B. A. & Collett, T. S. Nature 295, 560−564 (1982). | Article |
5. Cartwright, B. A. & Collett, T. S. J. comp. Physiol. A151, 521−543 (1983). | Article | ISI |
6. Gould, J. L. Science 227, 1492−1494 (1985). | ISI |
7. Collett, T. S. Phil. Trans. R. Soc. B337, 295−303 (1992).
8. Ronacher, B. Biol. Cybern. 32, 63−75 (1979). | Article |
9. van Hateren, J. H., Srinivasan, M. V. & Wait, P. B. J. comp. Physiol. A167, 649−654 (1990).
10. Horridge, G. A., Zhang, S. W. & Lehrer, M. Phil. Trans. R. Soc. B337, 49−57 (1992).
11. Zhang, S. W., Srinivasan, M. V. & Horridge, G. A. Proc. R. Soc. B248, 55−61 (1992).
12. Heisenberg, M. & Wolf, R. in Visual Motion and its Role in the Stabilization of Gaze (eds Miles, F. A. & Wallmann, J.) 265−283 (Elsevier, Amsterdam, 1993). | ChemPort |
13. Wolf, R. & Heisenberg, M. J. comp. Physiol. A169, 699−705 (1991). | ChemPort |
14. Götz, K. G. Kybernetik 2, 215−221 (1965). | PubMed |
15. Buchner, E. Biol. Cybern. 24, 85−101 (1976). | Article |
16. Cronly-Dillon, J. R., Sutherland, N. S. & Wolfe, J. J. exp. Neurol. 15, 455−462 (1966).
17. Myers, R. E. J. comp. Physiol. Psychol. 48, 470−473 (1955). | PubMed | ChemPort |
18. Ramachandran, V. S. Nature 262, 382−384 (1976). | Article | PubMed | ChemPort |
19. Karni, A. & Sagi, D. Proc. natn. Acad. Sci. U.S.A. 88, 4966−4970 (1991). | ChemPort |
20. O'Carroll, D. Nature 362, 541−543 (1993). | Article |
21. Srinivasan, M. V., Zhang, S. W. & Rolfe, B. Nature 362, 539−540 (1993). | Article |
22. Heisenberg, M. & Wolf, R. J. comp. Physiol. A163, 373−388 (1988). | Article |



© 1993 Nature Publishing Group
Privacy Policy