Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

African and North American populations of Drosophila melanogaster are very different at the DNA level

Abstract

UNDERSTANDING genetic evolution within species requires an accurate description of variation within and between populations and the ability to distinguish between the potential causes of an observed distribution of variation. In the cosmopolitan species Drosophila melanogaster, previous studies suggested that gene flow within and between continents is extensive1 and that most of the nuclear gene variation is found within, rather than among, populations2,3. Here we present evidence that a population from Zimbabwe is more than twice as variable as those from the United States of America at the DNA sequence level, that most variants are not shared between the two geographic regions, and that there are nearly fixed differences between the Zimbabwe and USA samples in genomic regions experiencing low recombination rates. It appears that there is an unappreciated degree of population structure in D. melanogaster and that equilibrium models of molecular evolution are inappropriate for this species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Singh, R. S. & Rhomberg, L. R. Genetics 115, 313–322 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Singh, R. S. & Rhomberg, L. R. Genetics 117, 255–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kreitman, M. Nature 304, 412–417 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Miyashita, N. T. Genetics 125, 407–419 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Miyashita, N. & Langley, C. H. Genetics 120, 199–212 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Martin-Campos, J. M., Cameron, J. M., Miyashita, N. & Aguadé, M. Genetics 130, 805–816 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Langley, C. H., MacDonald, J., Miyashita, N. & Aguadé, M. Proc. natn. Acad. Sci. U.S.A. 90, 1800–1803 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Hudson, R. R., Boos, D. D. & Kaplan, N. L. Molec. Biol. Evol. 9, 138–151 (1992).

    CAS  PubMed  Google Scholar 

  9. Tajima, F. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Eanes, W. F., Ajioka, J. W., Hey, J. & Wesley, C. Molec. Biol. Evol. 6, 384–397 (1989).

    CAS  PubMed  Google Scholar 

  11. Eanes, W. F., Labate, J. & Ajioka, J. W. Molec. Biol. Evol. 6, 492–502 (1989).

    CAS  PubMed  Google Scholar 

  12. Singh, R. S., Hickey, D. L. & David, J. Genetics 101, 235–256 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. David, J. R. & Capy, P. Trends Genet. 4, 106–111 (1988).

    Article  CAS  Google Scholar 

  14. Begun, D. J. & Aquadro, C. F. Nature 356, 519–520 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Maynard Smith, J. & Haigh, J. Genet. Res. 23, 23–35 (1974).

    Article  Google Scholar 

  16. Kaplan, N. L., Hudson, R. R. & Langley, C. H. Genetics 123, 887–899 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Charlesworth, B., Morgan, M. T. & Charlesworth, D. Genetics 134, 1289–1303 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stephan, W. & Mitchell, S. J. Genetics 132, 1039–1045 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hudson, R. Oxf. Surv. evol. Biol. 7, 1–44 (1990).

    Google Scholar 

  20. Kreitman, M. & Aguadé, M. Proc. natn. Acad. Sci. U.S.A. 83, 3562–3566 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Hudson, R. R. Genetics 100, 711–719 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nei, M. & Li, W.-H. Proc. natn. Acad. Sci. U.S.A. 76, 5269–5273 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Hudson, R. R., Slatkin, M. & Maddison, W. P. Genetics 132, 583–589 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hudson, R. R., Kreitman, M. & Aguadé, M. Genetics 116, 153–159 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kreitman, M. & Hudson, R. R. Genetics 127, 565–582 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lindsley, D. L. & Zimm, G. G. The Genome of Drosophila melanogaster (Academic, San Diego, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Begun, D., Aquadro, C. African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature 365, 548–550 (1993). https://doi.org/10.1038/365548a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365548a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing