Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment

Abstract

THE distributions of heat, salt and trace substances in the ocean thermocline depend on mixing along and across surfaces of equal density (isopycnal and diapycnal mixing, respectively). Measurements of the invasion of anthropogenic tracers, such as bomb tritium and 3He (see, for example, refs 1 and 2), have indicated that isopycnal processes dominate diapycnal mixing, and turbulence measurements have suggested that diapycnal mixing is small3,4, but it has not been possible to measure accurately the diapycnal diffusivity. Here we report such a measurement, obtained from the vertical dispersal of a patch of the inert compound SF6 released in the open ocean. The diapycnal diffusivity, averaged over hundreds of kilometres and five months, was 0.11 ± 0.02 cm2 s−1, confirming previous estimates1–4. Such a low diffusivity can support only a rather small diapycnal flux of nitrate into the euphotic zone; it justifies the neglect of diapycnal mixing in dynamic models of the thermocline25–27, and implies that heat, salt and tracers must penetrate the thermocline mostly by transport along, rather than across, density surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rooth, C. G. & Ostlund, H. G. Deep-Sea Res. 19, 481–492 (1972).

    Google Scholar 

  2. Jenkins, W. J. J. Mar. Res. 38, 533–569 (1980).

    CAS  Google Scholar 

  3. Moum, J. N. & Osborn, T. R. J. phys. Oceanogr. 16, 1250–1259 (1986).

    Article  ADS  Google Scholar 

  4. Gregg, M. C. J. geophys. Res. 94, 9686–9698 (1989).

    Article  ADS  Google Scholar 

  5. Lester, D. & Greenberg, L. A. Arch. Ind. Hyg. Occup. Med. 2, 348–349 (1950).

    CAS  PubMed  Google Scholar 

  6. Ledwell, J. R. & Watson, A. J. J. geophys. Res. 96, 8695–8718 (1991).

    Article  ADS  Google Scholar 

  7. Watson, A. J., Ledwell, J. R. & Sutherland, S. C. J. geophys. Res. 96, 8719–8725 (1991).

    Article  ADS  Google Scholar 

  8. Wanninkhof, R., Ledwell, J. R. & Watson, A. J. J. geophys. Res. 96, 8733–8740 (1991).

    Article  ADS  Google Scholar 

  9. Watson, A. J. & Liddicoat, M. I. Atmos. Environ. 19, 1477–1484 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Price, J., McKee, T., Valdes, J., Richardson, P. & Armi, L. Report. 86-31, Woods Hole Oceanographic Institution (Woods Hole, MA, 1986).

  11. Armi, L. & Stommel, H. J. phys. Oceanogr. 13, 828–857 (1983).

    Article  ADS  Google Scholar 

  12. Thiele, G. et al. J. phys. Oceanogr. 16, 814–826 (1986).

    Article  ADS  Google Scholar 

  13. Oakey, N. S. IEEE J. Ocean. Engng 13, 124–128 (1988).

    Article  ADS  Google Scholar 

  14. Duda, T. F., Cox, C. S. & Deaton, T. K. J. Atmos. Ocean Tech. 5, 16–33 (1988).

    Article  Google Scholar 

  15. Garrett, C. Dyn. Atmos. Oceans 7, 265–277 (1983).

    Article  ADS  Google Scholar 

  16. Haidvogel, D. B. & Keffer, T. Dynam. Atmos. Oceans 8, 1–40 (1984).

    Article  ADS  Google Scholar 

  17. Young, W. R., Rhines, P. B. & Garrett, C. J. R. J. phys. Oceanogr. 12, 515–527 (1982).

    Article  ADS  Google Scholar 

  18. Muller, P., Lien, R.-C. & Williams, R. J. phys. Oceanogr. 18, 401–416 (1988).

    Article  ADS  Google Scholar 

  19. Montgomery, E., Schmitt, R. W., Toole, J. M. & Polzin, K. L. EOS 73, 321 (1992).

    Google Scholar 

  20. Hosom, D. S., Weller, R. A., Prada, K. E. & Trask, R. P. Proc. Mar. Tech. Soc. 1, 206–210 (1991).

    Google Scholar 

  21. Williams, A. J., Converse, C. H. & Nicholson, J. Am. Soc. mech. Engng, OED 12, 25–29 (1987).

    Google Scholar 

  22. Eppley, R. W. & Peterson, B. J. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  23. Jenkins, W. J. Nature 331, 521–523 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Vilareal, T. A., Altabet, M. A. & Culver-Rymsza, K. Nature 363, 709–712 (1993).

    Article  ADS  Google Scholar 

  25. Welander, P. Tellus 11, 309–318 (1959).

    ADS  Google Scholar 

  26. Luyten, J. R., Pedlosky, J. & Stommel, H. J. phys. Oceanogr. 13, 292–309 (1983).

    Article  ADS  Google Scholar 

  27. Huang, R. X. Rev. Geophys. suppl. 590–609 (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledwell, J., Watson, A. & Law, C. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364, 701–703 (1993). https://doi.org/10.1038/364701a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364701a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing