Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Thursday 19 October 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 364, 525 - 527 (05 August 1993); doi:10.1038/364525a0

Red light disrupts magnetic orientation of migratory birds

Wolfgang Wiltschko*, Ursula Munro, Hugh Ford & Roswitha Wiltschko*

* Fachbereich Biologie der Universität Frankfurt a.M., Zoologie, Siesmayerstrasse 70, D 6000 Frankfurt a.M.T Germany
Department of Zoology, University of New England, Armidale, New South Wales 2351, Australia

THE transduction mechanisms and the neurophysiological basis of magnetoreception in birds are still largely unexplained, even though the role of the magnetic compass in the orientation of birds is fairly well understood1. The discussion on magnetoreception in birds and terrestrial vertebrates focuses mainly on two mechanisms: small particles of magnetite2,3 and biochemical bi-radical reactions of excited macromolecules4,5. When the bi-radical hypothesis was first proposed, magnetic resonance phenomena in the retina were suggested as the primary processes4, which led to the question of whether magnetoreception was light-dependent. Homing experiments6 and electrophysiological evidence7 from pigeons have produced evidence consistent with such a mechanism. An effect of the spectral composition of light on magnetic compass orientation in amphibians has recently been described8: under blue light of 450 nm and below, newts oriented as they did under the full spectrum, whereas they showed a roughly 90° counterclockwise shift when tested under wavelengths at or above 500 nm. Here we report the first orientation tests on migratory birds under light of different wavelengths; the results suggest a light-dependent process that appears to differ from that reported in newts.

------------------

References

1. Wiltschko, W. & Wiltschko, R. Curr. Ornithol. 5, 67−121 (1988).
2. Walcott, C., Gould, J. L. & Kirschvink, J. L. Science 205, 1027−1029 (1979). | PubMed | ISI | ChemPort |
3. Kirschvink, J. L., Jones, D. S. & MacFadden, B. L. Magnetite Biomineralization and Magnetoreception in Organisms (Plenum, New York, 1985).
4. Leask, M. J. M. Nature 287, 145−147 (1977).
5. Schulten, K. & Windemuth, A. in Biophysical Effects of Steady Magnetic Fields (eds Maret, G., Boccara, N. & Kiepenheuer, J.) 99−106 (Springer, Berlin, Heidelberg, New York, 1986). | ChemPort |
6. Wiltschko, W. & Wiltschko, R. Nature 291, 433−434 (1981). | Article |
7. Semm, P. & Demaine, C. J. comp. Physiol. A159, 619−625 (1986). | Article | ChemPort |
8. Phillips, J. B. & Borland, S. C. Nature 359, 142−144 (1992). | Article | ISI |
9. Wiltschko, W., Munro, U., Ford, H. & Wiltschko, R. Experientia 49, 167−170 (1993).
10. Emlen, S. T. & Emlen, J. T. Auk 83, 361−367 (1966). | ISI |
11. Bowmaker, J. K. Trends Neurosci. 3, 196−199 (1980). | Article |
12. Duecker, G. & Schulze, I. J. comp. Physiol. Psychol. 91, 1110−1117 (1977).
13. Maier, E. J. J. comp. Physiol. A170, 709−714 (1992).
14. Gwinner, E. Naturwissenschaften 61, 405 (1974). | Article | PubMed | ChemPort |
15. Lohmann, J. K. J. exp. Biol. 155, 37−49 (1991). | PubMed |
16. Marhold, S., Burda, H. & Wiltschko, W. Verh. dt. zool Ges. 84, 354 (1991).
17. Quinn, T. P. J. comp. Physiol. A137, 243−248 (1980). | Article |
18. Quinn, T. P., Merrill, R. T. & Brannon, E. L. J. exp. Zool. 217, 137−142 (1981). | Article | ISI |
19. Salmon, M. & Wyneken, J. in Orientation and Navigation: Birds, Humans and Other Animals. Paper 35 (1993 Conference of the Royal Institute of Navigation, Oxford, 1993).
20. Batschelet, E. Circular Statistics in Biology (Academic, New York 1981).



© 1993 Nature Publishing Group
Privacy Policy