Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Confidence in evolutionary trees from biological sequence data

Abstract

THE reliable construction of evolutionary trees from nucleotide sequences often depends on randomization tests such as the bootstrap1 and FTP (cladistic permutation tail probability) tests2–6. The genomes of bacteria7, viruses8, animals7,9,10 and plants11, however, vary widely in their nucleotide frequencies. Where genomes have independently acquired similar G+C base compositions, signals in the data arise that cause methods of evolutionary tree reconstruction to estimate the wrong tree by grouping together sequences with similar G+C content12–14. Under these conditions randomization tests can lead to both the rejection of the correct evolutionary hypothesis and acceptance of an incorrect hypothesis (such as with the contradictory inferences from the photosynthetic rbcS and rbcL sequences14). We have proposed one approach to testing for the G+C content problem15. Here we present a formalization of this method, a frequency-dependent significance test, which has general application.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Felsenstein, J. Evolution 39, 783–791 (1985).

    Article  Google Scholar 

  2. Archie, J. W. Syst. Zool. 38, 239–252 (1989).

    Article  Google Scholar 

  3. Henderson, I. M., Penny, D. & Hendy, M. D. Nature 326, 22 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Henderson, I. M., Hendy, M. D. & Penny, D. J. theor. Biol. 140, 289–303 (1989).

    Article  CAS  Google Scholar 

  5. Faith, D. & Cranston, P. S. Cladistics 7, 1–28 (1991).

    Article  Google Scholar 

  6. Steel, M. A., Hendy, M. D. & Penny, D. J. Class. 9, 71–90 (1992).

    Article  Google Scholar 

  7. Jukes, T. H. & Bhushan, V. J. molec. Evol. 24, 39–44 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Keese, P., MacKenzie, A. & Gibbs, A. Virology 172, 536–546 (1989).

    Article  CAS  Google Scholar 

  9. Bernardi, G. & Bernardi, G. J. molec. Evol. 24, 1–11 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Crozier, R. H. & Crozier, Y. C. Genetics 133, 97–117 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Oliver, J. L., Marin, A. & Martinez-Zapater, J. M. Nucleic Acids Res. 18, 65–73 (1990).

    Article  CAS  Google Scholar 

  12. Penny, D., Hendy, M. A., Zimmer, E. A. & Hanby, R. K. Aust. Syst. Bot. 3, 21–38 (1990).

    Article  Google Scholar 

  13. Lockhart, P. J., Howe, C. J., Bryant, D. A., Beanland, T. J. & Larkum, A. W. D. J. molec. Evol. 34, 153–162 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Lockhart, P. J. et al. FEBS Lett. 301, 127–131 (1992).

    Article  CAS  Google Scholar 

  15. Lockhart, P. J. & Penny, D. Research in Photosynthesis Vol. III, 499–505 (Kluwer, Dordrecht, 1992).

    Book  Google Scholar 

  16. Hasegawa, M. & Hashimoto, T. Nature 361, 23 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Saccone, C., Pesole, G. & Preparata, G. J. molec. Evol. 29, 407–411 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Lockhart, P. J., Penny, D., Hendy, M. D. & Larkum, A. W. D. Photosyn. Res. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steel, M., Lockhart, P. & Penny, D. Confidence in evolutionary trees from biological sequence data. Nature 364, 440–442 (1993). https://doi.org/10.1038/364440a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364440a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing