Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Saturday 22 July 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 361, 436 - 438 (04 February 1993); doi:10.1038/361436a0

Reduction of Fe(III) in sediments by sulphate-reducing bacteria

Max L. Coleman*, David B. Hedrick, Derek R. Lovley§, David C. White & Kenneth Pye

* Postgraduate Research Institute for Sedimentology, University of Reading, Whiteknights, PO Box 227, Reading RG6 2AB, UK
BP Research & Engineering Centre, Sunbury-on-Thames,Middlesex TW16 7LN, UK
BP Research & Engineering Centre, Sunbury-on-Thames, Middlesex TW16 7LN, UK
Center for Environmental Biotechnology, University of Tennessee, 10515 Research Drive, Knoxville, Tennessee 37932-2567, USA
§ Water Resources Division, 430 National Center, United States Geological Survey, Reston, Virginia 22092, USA
Microbiology Department, University of Tennessee, Knoxville,Tennessee 37996-0845 and Environmental Science Division,Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

REDUCTION of ferric iron (Fe(III)) to ferrous iron (Fe(II)) is one of the most important geochemical reactions in anaerobic aquatic sediments because of its many consequences for the organic and inorganic chemistry of these environments1. In marine environments, sulphate-reducing bacteria produce H2S, which can reduce iron oxyhydroxides2 to form iron sulphides. The presence of siderite (FeCO3) in marine sediments is anomalous, however, as it is unstable in the presence of H2S. Previous work3,4 has suggested a bacterial origin of siderite. Here we describe geochemical and microbiological studies which suggest that contemporary formation of siderite concretions in a salt-marsh sediment results from the activity of sulphate-reducing bacteria. We find that, instead of reducing Fe(III) indirectly through the production of sulphide, some of these bacteria can reduce Fe(III) directly through an enzymatic mechanism, producing siderite rather than iron sulphides. Sulphate-reducing bacteria may thus be an important and previously unrecognized agent for Fe(III) reduction in aquatic sediments and ground waters.

------------------

References

1. Lovley, D. R. Microbiol. Rev. 55, 259−287 (1991). | PubMed | ISI | ChemPort |
2. Berner, R. A. Geochim. cosmochim. Acta 48, 605−615 (1984). | Article | ISI | ChemPort |
3. Canfield, D. E. Geochim. cosmochim. Acta 53, 619−632 (1989). | Article | PubMed | ChemPort |
4. Sørensen, J. Appl. envir. Microbiol. 43, 319−324 (1982). | ISI |
5. Pye, K., Dickson, J. A. D., Schiavon, N., Coleman, M. L. & Cox, M. Sedimentology 37, 325−343 (1990). | ChemPort |
6. Berner, R. A. Geochim. cosmochim. Acta 32, 477−483 (1968). | Article | ChemPort |
7. Gautier, D. L. J. sedim. Petrol. 52, 859−871 (1982). | ChemPort |
8. Irwin, H., Curtis, C. & Coleman, M. Nature 269, 209−213 (1977). | Article | ISI | ChemPort |
9. White, D. C. Adv. Limnol. 31, 1−18 (1988).
10. White, D. C., Bobbie, R. J., King, J. D., Nickels, J. & Amoe, P. in Methodology for Biomass Determinations and Microbial Activities in Sediments. ASTM STP 673 (eds Litchfield, C. D. & Seyfried, P. L.) 87−103 (American Society for Testing and Materials, Philadelphia, 1979).
11. Balkwill, D. L., Leach, F. R., Wilson, J. T., McNabb, J. F. & White, D. C. Microb. Ecol. 16, 73−84 (1988). | ChemPort |
12. Findlay, R. H., Trexler, M. B., Guckert, J. B. & White, D. C. Mar. Ecol. Prog. Ser. 61, 121−133 (1990).
13. Vestal, J. R. & White, D. C. Bioscience 39, 535−541 (1989). | PubMed | ChemPort |
14. Hedrick, D. B., Guckert, J. B. & White, D. C. J. Lipid Res. 32, 656−666 (1991).
15. Lovley, D. R. et al. Arch. Microbiol. (in the press).
16. Hedrick, D. B. & White, D. C. J. microbiol. Methods 5, 243−254 (1986). | Article | ChemPort |
17. Dowling, N. J. E., Widdel, F. & White, D. C. J. gen. Microbiol. 132, 1815−1825 (1986). | ISI | ChemPort |
18. Edlund, A., Nichols, P. D., Roffey, R. & White, D. C. J. Lipid Res. 26, 982−988 (1985). | PubMed | ChemPort |
19. Cord-Ruwisch, R. Seitz, H.-J. & Conrad, R. Arch. Microbiol. 149, 350−357 (1988). | Article | ChemPort |
20. Chapelle, F. H. & Lovley, D. R. Groundwater 30, 29−36 (1992). | ChemPort |
21. Murphy, E. M. et al. Water Resources Res. 28, 723−740 (1992). | Article | ChemPort |
22. Lovley, D. R., Chapelle, F. H. & Phillips, E. J. P. Geology 18, 954−957 (1990). | Article | ChemPort |
23. Guckert, J. B., Hood, M. A. & White, D. C. Appl. envir. Microbiol. 52, 794−801 (1986). | ChemPort |
24. Lovley, D. R. & Phillips, E. J. P. Appl. envir. Microbiol. 51, 683−689 (1986). | ChemPort |
25. Lovley, D. R. & Phillips, E. J. P. Appl. envir. Microbiol. 54, 1472−1480 (1988). | ChemPort |



© 1993 Nature Publishing Group
Privacy Policy