Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Origin of modal and rhythmic igneous layering by sedimentation in a convecting magma chamber

Abstract

EXPERIMENTAL investigations of convecting, particle-laden fluids show two regimes for convection driven by cooling from above1. In very dilute suspensions, convection will maintain a homogeneous distribution of particles throughout the convecting layer provided that particle fall velocities are small compared with turbulent fluid velocities. Above a critical concentration, convection is unable to keep the particles suspended, so the particles settle, leaving behind a layer of convecting fluid virtually free of particles. Here we apply these results to cooling magma chambers, in which crystallization leads to an increase in suspended crystal content with time. Discrete sedimentation events are predicted each time the concentration exceeds the critical value. For common igneous minerals, critical concentrations are very small (typically 0.002–0.03 wt%) and layers of the order of centimetres to a few metres thick will result. Because minerals of different density and size have different critical concentrations and settling velocities, complex fluctuations in sedimentation rate and mineral proportions can occur in a multi-component melt. This may lead to either regular repetitive cycles or more complex fluctuations. The process is confined to low-viscosity magmas, such as basalts, in which the crystals are able to separate from the active thermal boundary layer during convection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Koyaguchi, T., Hallworth, M. A. & Huppert, H. E. J. Volcanol. geotherm. Res. (in the press).

  2. Darwin, C. R. Second Part of the Geology of the Voyage of the Beagle (London, 1844).

    Google Scholar 

  3. Lewis, J. V. N. J. Geol. Surv. 11, 99–153 (1907).

    Google Scholar 

  4. Bowen, N. L. Am. J. Sci. 39, 175–191 (1915).

    Article  ADS  CAS  Google Scholar 

  5. Wager, L. R. & Deer, W. A. Meddr. Gronland 105, 1–32 (1939).

    Google Scholar 

  6. Wager, L. R. & Brown, G. M. Layered Igneous Rocks (Oliver & Boyd, Edinburgh, 1968).

    Google Scholar 

  7. Irvine, T. N. Am. J. Sci. A280, 1–58 (1980).

    Article  Google Scholar 

  8. McBirney, A. R. & Noyes, R. M. J. Petrol. 20, 485–554 (1979).

    Article  ADS  Google Scholar 

  9. Sparks, R. S. J., Huppert, H. E. & Turner, J. S. Phil. Trans. R. Soc. Lond. A310, 511–534 (1984).

    Article  ADS  Google Scholar 

  10. Morse, S. A. Mem. Geol. Soc. Am. 112 (1969).

  11. Brandeis, G. & Jaupart, C. Earth planet Sci. Lett. 77, 345–361 (1986).

    Article  ADS  Google Scholar 

  12. Turner, J. S. Nature 285, 213–215 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Martin, D. & Nokes, R. Nature 332, 534–536 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Koyaguchi, T., Hallworth, M. A., Huppert, H. E. & Sparks, R. S. J. Nature 343, 447–450 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Cox, K. G. & Mitchell, C. Nature 333, 447–449 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Huppert, H. E. & Sparks, R. S. J. J. Fluid Mech. 188, 107–131 (1988).

    Article  ADS  Google Scholar 

  17. Worster, M. G., Huppert, H. E. & Sparks, R. S. J. Earth planet Sci. Lett. 101, 78–79 (1990).

    Article  ADS  Google Scholar 

  18. Brown, G. M. Phil. Trans. R. Soc. Lond. B240, 1–53 (1956).

    Google Scholar 

  19. Bedard, J. H. J., Sparks, R. S. J., Renner, R., Cheadle, M. J. & Hallworth, M. A. J. geol. Soc. Lond. 145, 204–207.

  20. Tait, S. R. Geol. Mag. 122, 469–484 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Dunham, A. C. & Wadsworth, W. J. Miner. Mag. 42, 347–356 (1978).

    Article  CAS  Google Scholar 

  22. Maaloe, S. Origins of Igneous Layering ed. Parsons, I. 247–262 (Reidel, 1986).

    Google Scholar 

  23. Howard, L. N. Proc. 11th int. Congress appl. Mech 1109–1115 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sparks, R., Huppert, H., Koyaguchi, T. et al. Origin of modal and rhythmic igneous layering by sedimentation in a convecting magma chamber. Nature 361, 246–249 (1993). https://doi.org/10.1038/361246a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361246a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing