Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets

Abstract

INCREASING atmospheric concentrations of the three main greenhouse gases—carbon dioxide, methane, and nitrous oxide— account for about 70% of anticipated global warming1, but the production–consumption budgets are not balanced for any of these gases2. Snow can cover between 44 and 53% of the land area of the Northern Hemisphere3 and may be several metres deep in alpine and sub-alpine regions for more than half the year. Most trace-gas budgets assume that trace-gas exchange stops when soil is snow covered or soil temperatures drop to ~0°C (refs 4,5). Thus alpine and sub-alpine soils are generally considered to be net sinks for atmospheric CO2. Some reports6,7, however, suggest that soil microorganisms beneath the snow continue to respire at temperatures close to 0 °C. Here we present evidence that the soils under alpine and sub-alpine snowpacks emit CO2 and N2O and take up atmospheric CH4 throughout the snow-covered period. These fluxes represent an important part of the annual trace-gas budget for these ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rohde, H. Science 248, 1217–1219 (1990).

    Article  ADS  Google Scholar 

  2. IPCC in Climate Change: The IPCC Scientific Assessment, (eds Hoghton J. T., Jenkins C. J. & Ephraums J. J.) Introduction, 36–37, (Cambridge Univ. Press, Cambridge, (1990).

  3. Barry, R. G. in Encyclopedia of Earth System Science vol. 1, 517–524 (Academic, San Diego. 1992).

    Google Scholar 

  4. Bouwman, A. F. in Soils and the Greenhouse Effect (Wiley, Chichester, 1990).

    Google Scholar 

  5. Steudler, P. A., Bowden, R. D., Melillo, J. M. & Aber, J. D. Nature 341, 314–316 (1989).

    Article  ADS  Google Scholar 

  6. Taylor, B. R. & Parkinson, D. Soil Biol. Biochem. 20, 657–665 (1998).

    Article  Google Scholar 

  7. Sommerfeld, R. A., Musselman, R. C., Reuss, J. O. & Mosier, A. R. Geophys. Res. Lett. 18, 1225–1228 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Kelley, J. J., Weaver, D. F. & Smith, B. P., Ecology 49, 358–361 (1968).

    Article  Google Scholar 

  9. Coyne, P. I. & Kelley, J. J. J. geophys. Res. 79, 799–802 (1974).

    Article  ADS  Google Scholar 

  10. Solomon, D. K. & Cerling, T. E. Wat. Resour. Res. 23, 2257–2265 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Kling, G. W., Kipphut, G. W. & Miller, M. C. Science 251, 198–301 (1991).

    Article  Google Scholar 

  12. Keller, M., Mirtre, M. E. & Stallard, R. F. Glob. biogeochem. Cycles 4, 21–27 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Mosier, A., Schimel, D., Valentine, D., Bronson, K. & Parton W. Nature 350, 330–332 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Whalen, S. C. & Reeburgh, W. S. Nature 346, 160–162 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Martinec, J. & Rango, A. J. Hydrol 84, 197–219 (1986).

    Article  ADS  Google Scholar 

  16. Musselman, R. C. Rocky Mt Forest & Range Expt. Station Gen. Tech. Rep. (in the press)

  17. Bronson & Mosier, A. R. Biol. Fertil. Soils 11, 116–120 (1991).

    Article  Google Scholar 

  18. Mosier, A. R., & Mack, L. Soil Sci. Soc. Am. J. 44, 1121–1123 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Perry, R. H., Chilton, C. H. & Kirkpatrick, S. D. in Chemical Engineers' Handbook (McGraw-Hill, New York, 1963).

    Google Scholar 

  20. Fahey, T. J. Ecol. Monogr. 53, 51–72 (1983).

    Article  Google Scholar 

  21. Marland, G. in Global Climate Change Linkages: Acid Rain, Air Quality, and Stratospheric Ozone (Elsevier, New York 1989).

    Google Scholar 

  22. Kinsman, J. D. & Marland, G. 82nd A. Mtg Air and Waste Management Assoc., Pap. 89–148.5 (Pittsburgh, 1989).

  23. Dorland, S. & Beauchamp, E. G. Can. J. Soil Sci. 71, 293–303 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommerfeld, R., Mosier, A. & Musselman, R. CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets. Nature 361, 140–142 (1993). https://doi.org/10.1038/361140a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361140a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing